2015-09-03 00:14:40 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
2016-01-20 17:59:44 +08:00
|
|
|
#include "limits"
|
2015-09-03 00:14:40 +08:00
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Stochastic Gradient Descent SVM Classifier *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace ml
|
|
|
|
{
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
class SVMSGDImpl : public SVMSGD
|
|
|
|
{
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
public:
|
|
|
|
SVMSGDImpl();
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual ~SVMSGDImpl() {}
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual bool train(const Ptr<TrainData>& data, int);
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags = 0 ) const;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual bool isClassifier() const { return params.svmsgdType == SGD || params.svmsgdType == ASGD; }
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual bool isTrained() const;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual void clear();
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual void write(FileStorage& fs) const;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual void read(const FileNode& fn);
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual Mat getWeights(){ return weights_; }
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual float getShift(){ return shift_; }
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual int getVarCount() const { return weights_.cols; }
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual String getDefaultName() const {return "opencv_ml_svmsgd";}
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual void setOptimalParameters(int type = ASGD);
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual int getType() const;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
virtual void setType(int type);
|
|
|
|
|
|
|
|
CV_IMPL_PROPERTY(float, Lambda, params.lambda)
|
|
|
|
CV_IMPL_PROPERTY(float, Gamma0, params.gamma0)
|
|
|
|
CV_IMPL_PROPERTY(float, C, params.c)
|
|
|
|
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
private:
|
|
|
|
void updateWeights(InputArray sample, bool is_first_class, float gamma);
|
|
|
|
float calcShift(InputArray trainSamples, InputArray trainResponses) const;
|
|
|
|
std::pair<bool,bool> areClassesEmpty(Mat responses);
|
|
|
|
void writeParams( FileStorage& fs ) const;
|
|
|
|
void readParams( const FileNode& fn );
|
|
|
|
static inline bool isFirstClass(float val) { return val > 0; }
|
|
|
|
|
|
|
|
|
|
|
|
// Vector with SVM weights
|
|
|
|
Mat weights_;
|
|
|
|
float shift_;
|
|
|
|
|
|
|
|
// Random index generation
|
|
|
|
RNG rng_;
|
|
|
|
|
|
|
|
// Parameters for learning
|
|
|
|
struct SVMSGDParams
|
|
|
|
{
|
|
|
|
float lambda; //regularization
|
|
|
|
float gamma0; //learning rate
|
|
|
|
float c;
|
|
|
|
TermCriteria termCrit;
|
|
|
|
SvmsgdType svmsgdType;
|
|
|
|
};
|
|
|
|
|
|
|
|
SVMSGDParams params;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<SVMSGD> SVMSGD::create()
|
|
|
|
{
|
|
|
|
return makePtr<SVMSGDImpl>();
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
|
|
|
|
Mat trainSamples = data->getTrainSamples();
|
|
|
|
|
|
|
|
// Initialize varCount
|
|
|
|
int trainSamplesCount_ = trainSamples.rows;
|
|
|
|
int varCount = trainSamples.cols;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
|
|
|
// Initialize weights vector with zeros
|
2016-01-20 17:59:44 +08:00
|
|
|
weights_ = Mat::zeros(1, varCount, CV_32F);
|
|
|
|
|
|
|
|
Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix
|
|
|
|
|
|
|
|
std::pair<bool,bool> are_empty = areClassesEmpty(trainResponses);
|
|
|
|
|
|
|
|
if ( are_empty.first && are_empty.second )
|
|
|
|
{
|
|
|
|
weights_.release();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if ( are_empty.first || are_empty.second )
|
|
|
|
{
|
|
|
|
shift_ = are_empty.first ? -1 : 1;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Mat currentSample;
|
|
|
|
float gamma = 0;
|
|
|
|
Mat lastWeights = Mat::zeros(1, varCount, CV_32F); //weights vector for calculating terminal criterion
|
|
|
|
Mat averageWeights; //average weights vector for ASGD model
|
|
|
|
double err = DBL_MAX;
|
|
|
|
if (params.svmsgdType == ASGD)
|
|
|
|
{
|
|
|
|
averageWeights = Mat::zeros(1, varCount, CV_32F);
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Stochastic gradient descent SVM
|
2016-01-20 17:59:44 +08:00
|
|
|
for (int iter = 0; (iter < params.termCrit.maxCount)&&(err > params.termCrit.epsilon); iter++)
|
|
|
|
{
|
|
|
|
//generate sample number
|
|
|
|
int randomNumber = rng_.uniform(0, trainSamplesCount_);
|
|
|
|
|
|
|
|
currentSample = trainSamples.row(randomNumber);
|
|
|
|
|
|
|
|
//update gamma
|
|
|
|
gamma = params.gamma0 * std::pow((1 + params.lambda * params.gamma0 * (float)iter), (-params.c));
|
|
|
|
|
|
|
|
bool is_first_class = isFirstClass(trainResponses.at<float>(randomNumber));
|
|
|
|
updateWeights( currentSample, is_first_class, gamma );
|
|
|
|
|
|
|
|
//average weights (only for ASGD model)
|
|
|
|
if (params.svmsgdType == ASGD)
|
|
|
|
{
|
|
|
|
averageWeights = ((float)iter/ (1 + (float)iter)) * averageWeights + weights_ / (1 + (float) iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
err = norm(weights_ - lastWeights);
|
|
|
|
weights_.copyTo(lastWeights);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.svmsgdType == ASGD)
|
|
|
|
{
|
|
|
|
weights_ = averageWeights;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
2016-01-20 17:59:44 +08:00
|
|
|
|
|
|
|
shift_ = calcShift(trainSamples, trainResponses);
|
|
|
|
|
|
|
|
return true;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
|
|
|
|
{
|
|
|
|
std::pair<bool,bool> are_classes_empty(true, true);
|
|
|
|
int limit_index = responses.rows;
|
|
|
|
|
|
|
|
for(int index = 0; index < limit_index; index++)
|
|
|
|
{
|
|
|
|
if (isFirstClass(responses.at<float>(index,0)))
|
|
|
|
are_classes_empty.first = false;
|
|
|
|
else
|
|
|
|
are_classes_empty.second = false;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
if (!are_classes_empty.first && ! are_classes_empty.second)
|
|
|
|
break;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
return are_classes_empty;
|
|
|
|
}
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
|
|
|
|
{
|
|
|
|
float distance_to_classes[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
Mat trainSamples = _samples.getMat();
|
|
|
|
int trainSamplesCount = trainSamples.rows;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
Mat trainResponses = _responses.getMat();
|
|
|
|
|
|
|
|
for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++)
|
|
|
|
{
|
|
|
|
Mat currentSample = trainSamples.row(samplesIndex);
|
|
|
|
float scalar_product = currentSample.dot(weights_);
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
bool is_first_class = isFirstClass(trainResponses.at<float>(samplesIndex));
|
|
|
|
int index = is_first_class ? 0:1;
|
|
|
|
float sign_to_mul = is_first_class ? 1 : -1;
|
|
|
|
float cur_distance = scalar_product * sign_to_mul ;
|
|
|
|
|
|
|
|
if (cur_distance < distance_to_classes[index])
|
|
|
|
{
|
|
|
|
distance_to_classes[index] = cur_distance;
|
|
|
|
}
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
//todo: areClassesEmpty(); make const;
|
|
|
|
return -(distance_to_classes[0] - distance_to_classes[1]) / 2.f;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) const
|
|
|
|
{
|
|
|
|
float result = 0;
|
|
|
|
cv::Mat samples = _samples.getMat();
|
|
|
|
int nSamples = samples.rows;
|
|
|
|
cv::Mat results;
|
2015-09-03 00:14:40 +08:00
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
CV_Assert( samples.cols == weights_.cols && samples.type() == CV_32F );
|
|
|
|
|
|
|
|
if( _results.needed() )
|
|
|
|
{
|
|
|
|
_results.create( nSamples, 1, samples.type() );
|
|
|
|
results = _results.getMat();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert( nSamples == 1 );
|
|
|
|
results = Mat(1, 1, CV_32F, &result);
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
2016-01-20 17:59:44 +08:00
|
|
|
|
|
|
|
Mat currentSample;
|
|
|
|
float criterion = 0;
|
|
|
|
|
|
|
|
for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++)
|
|
|
|
{
|
|
|
|
currentSample = samples.row(sampleIndex);
|
|
|
|
criterion = currentSample.dot(weights_) + shift_;
|
|
|
|
results.at<float>(sampleIndex) = (criterion >= 0) ? 1 : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
void SVMSGDImpl::updateWeights(InputArray _sample, bool is_first_class, float gamma)
|
|
|
|
{
|
|
|
|
Mat sample = _sample.getMat();
|
|
|
|
|
|
|
|
int responce = is_first_class ? 1 : -1; // ensure that trainResponses are -1 or 1
|
|
|
|
|
|
|
|
if ( sample.dot(weights_) * responce > 1)
|
|
|
|
{
|
2015-09-03 00:14:40 +08:00
|
|
|
// Not a support vector, only apply weight decay
|
2016-01-20 17:59:44 +08:00
|
|
|
weights_ *= (1.f - gamma * params.lambda);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2015-09-03 00:14:40 +08:00
|
|
|
// It's a support vector, add it to the weights
|
2016-01-20 17:59:44 +08:00
|
|
|
weights_ -= (gamma * params.lambda) * weights_ - gamma * responce * sample;
|
|
|
|
//std::cout << "sample " << sample << std::endl;
|
|
|
|
//std::cout << "weights_ " << weights_ << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SVMSGDImpl::isTrained() const
|
|
|
|
{
|
|
|
|
return !weights_.empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SVMSGDImpl::write(FileStorage& fs) const
|
|
|
|
{
|
|
|
|
if( !isTrained() )
|
|
|
|
CV_Error( CV_StsParseError, "SVMSGD model data is invalid, it hasn't been trained" );
|
|
|
|
|
|
|
|
writeParams( fs );
|
|
|
|
|
|
|
|
fs << "shift" << shift_;
|
|
|
|
fs << "weights" << weights_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SVMSGDImpl::writeParams( FileStorage& fs ) const
|
|
|
|
{
|
|
|
|
String SvmsgdTypeStr;
|
|
|
|
|
|
|
|
switch (params.svmsgdType)
|
|
|
|
{
|
|
|
|
case SGD:
|
|
|
|
SvmsgdTypeStr = "SGD";
|
|
|
|
break;
|
|
|
|
case ASGD:
|
|
|
|
SvmsgdTypeStr = "ASGD";
|
|
|
|
break;
|
|
|
|
case ILLEGAL_VALUE:
|
|
|
|
SvmsgdTypeStr = format("Uknown_%d", params.svmsgdType);
|
|
|
|
default:
|
|
|
|
std::cout << "params.svmsgdType isn't initialized" << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
fs << "svmsgdType" << SvmsgdTypeStr;
|
|
|
|
|
|
|
|
fs << "lambda" << params.lambda;
|
|
|
|
fs << "gamma0" << params.gamma0;
|
|
|
|
fs << "c" << params.c;
|
|
|
|
|
|
|
|
fs << "term_criteria" << "{:";
|
|
|
|
if( params.termCrit.type & TermCriteria::EPS )
|
|
|
|
fs << "epsilon" << params.termCrit.epsilon;
|
|
|
|
if( params.termCrit.type & TermCriteria::COUNT )
|
|
|
|
fs << "iterations" << params.termCrit.maxCount;
|
|
|
|
fs << "}";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void SVMSGDImpl::read(const FileNode& fn)
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
|
|
|
|
readParams(fn);
|
|
|
|
|
|
|
|
shift_ = (float) fn["shift"];
|
|
|
|
fn["weights"] >> weights_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SVMSGDImpl::readParams( const FileNode& fn )
|
|
|
|
{
|
|
|
|
String svmsgdTypeStr = (String)fn["svmsgdType"];
|
|
|
|
SvmsgdType svmsgdType =
|
|
|
|
svmsgdTypeStr == "SGD" ? SGD :
|
|
|
|
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_VALUE;
|
|
|
|
|
|
|
|
if( svmsgdType == ILLEGAL_VALUE )
|
|
|
|
CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" );
|
|
|
|
|
|
|
|
params.svmsgdType = svmsgdType;
|
|
|
|
|
|
|
|
CV_Assert ( fn["lambda"].isReal() );
|
|
|
|
params.lambda = (float)fn["lambda"];
|
|
|
|
|
|
|
|
CV_Assert ( fn["gamma0"].isReal() );
|
|
|
|
params.gamma0 = (float)fn["gamma0"];
|
|
|
|
|
|
|
|
CV_Assert ( fn["c"].isReal() );
|
|
|
|
params.c = (float)fn["c"];
|
|
|
|
|
|
|
|
FileNode tcnode = fn["term_criteria"];
|
|
|
|
if( !tcnode.empty() )
|
|
|
|
{
|
|
|
|
params.termCrit.epsilon = (double)tcnode["epsilon"];
|
|
|
|
params.termCrit.maxCount = (int)tcnode["iterations"];
|
|
|
|
params.termCrit.type = (params.termCrit.epsilon > 0 ? TermCriteria::EPS : 0) +
|
|
|
|
(params.termCrit.maxCount > 0 ? TermCriteria::COUNT : 0);
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
2016-01-20 17:59:44 +08:00
|
|
|
else
|
|
|
|
params.termCrit = TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 1000, FLT_EPSILON );
|
|
|
|
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
|
|
|
|
2016-01-20 17:59:44 +08:00
|
|
|
void SVMSGDImpl::clear()
|
|
|
|
{
|
|
|
|
weights_.release();
|
|
|
|
shift_ = 0;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
2016-01-20 17:59:44 +08:00
|
|
|
|
|
|
|
|
|
|
|
SVMSGDImpl::SVMSGDImpl()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
rng_(0);
|
|
|
|
|
|
|
|
params.svmsgdType = ILLEGAL_VALUE;
|
|
|
|
|
|
|
|
// Parameters for learning
|
|
|
|
params.lambda = 0; // regularization
|
|
|
|
params.gamma0 = 0; // learning rate (ideally should be large at beginning and decay each iteration)
|
|
|
|
params.c = 0;
|
|
|
|
|
|
|
|
TermCriteria _termCrit(TermCriteria::COUNT + TermCriteria::EPS, 0, 0);
|
|
|
|
params.termCrit = _termCrit;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SVMSGDImpl::setOptimalParameters(int type)
|
|
|
|
{
|
|
|
|
switch (type)
|
|
|
|
{
|
|
|
|
case SGD:
|
|
|
|
params.svmsgdType = SGD;
|
|
|
|
params.lambda = 0.00001;
|
|
|
|
params.gamma0 = 0.05;
|
|
|
|
params.c = 1;
|
|
|
|
params.termCrit.maxCount = 50000;
|
|
|
|
params.termCrit.epsilon = 0.00000001;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ASGD:
|
|
|
|
params.svmsgdType = ASGD;
|
|
|
|
params.lambda = 0.00001;
|
|
|
|
params.gamma0 = 0.5;
|
|
|
|
params.c = 0.75;
|
|
|
|
params.termCrit.maxCount = 100000;
|
|
|
|
params.termCrit.epsilon = 0.000001;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
CV_Error( CV_StsParseError, "SVMSGD model data is invalid" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SVMSGDImpl::setType(int type)
|
|
|
|
{
|
|
|
|
switch (type)
|
|
|
|
{
|
|
|
|
case SGD:
|
|
|
|
params.svmsgdType = SGD;
|
|
|
|
break;
|
|
|
|
case ASGD:
|
|
|
|
params.svmsgdType = ASGD;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
params.svmsgdType = ILLEGAL_VALUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int SVMSGDImpl::getType() const
|
|
|
|
{
|
|
|
|
return params.svmsgdType;
|
2015-09-03 00:14:40 +08:00
|
|
|
}
|
2016-01-20 17:59:44 +08:00
|
|
|
} //ml
|
|
|
|
} //cv
|