opencv/samples/python/letter_recog.py

190 lines
6.1 KiB
Python
Raw Normal View History

2013-03-06 14:41:02 +08:00
#!/usr/bin/env python
2012-10-17 07:18:30 +08:00
'''
The sample demonstrates how to train Random Trees classifier
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
We use the sample database letter-recognition.data
from UCI Repository, here is the link:
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and Computer Science.
The dataset consists of 20000 feature vectors along with the
responses - capital latin letters A..Z.
The first 10000 samples are used for training
and the remaining 10000 - to test the classifier.
======================================================
USAGE:
letter_recog.py [--model <model>]
[--data <data fn>]
[--load <model fn>] [--save <model fn>]
Models: RTrees, KNearest, Boost, SVM, MLP
'''
# Python 2/3 compatibility
from __future__ import print_function
2012-10-17 07:18:30 +08:00
import numpy as np
import cv2 as cv
2012-10-17 07:18:30 +08:00
def load_base(fn):
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
return samples, responses
class LetterStatModel(object):
class_n = 26
train_ratio = 0.5
def load(self, fn):
self.model = self.model.load(fn)
2012-10-17 07:18:30 +08:00
def save(self, fn):
self.model.save(fn)
def unroll_samples(self, samples):
sample_n, var_n = samples.shape
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
return new_samples
def unroll_responses(self, responses):
sample_n = len(responses)
new_responses = np.zeros(sample_n*self.class_n, np.int32)
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
new_responses[resp_idx] = 1
return new_responses
class RTrees(LetterStatModel):
def __init__(self):
self.model = cv.ml.RTrees_create()
2012-10-17 07:18:30 +08:00
def train(self, samples, responses):
self.model.setMaxDepth(20)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
2012-10-17 07:18:30 +08:00
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
2012-10-17 07:18:30 +08:00
class KNearest(LetterStatModel):
def __init__(self):
self.model = cv.ml.KNearest_create()
2012-10-17 07:18:30 +08:00
def train(self, samples, responses):
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
2012-10-17 07:18:30 +08:00
def predict(self, samples):
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
2012-10-17 07:18:30 +08:00
return results.ravel()
class Boost(LetterStatModel):
def __init__(self):
self.model = cv.ml.Boost_create()
2012-10-17 07:18:30 +08:00
def train(self, samples, responses):
_sample_n, var_n = samples.shape
2012-10-17 07:18:30 +08:00
new_samples = self.unroll_samples(samples)
new_responses = self.unroll_responses(responses)
var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
2016-02-04 22:12:32 +08:00
self.model.setWeakCount(15)
self.model.setMaxDepth(10)
self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
2012-10-17 07:18:30 +08:00
def predict(self, samples):
new_samples = self.unroll_samples(samples)
_ret, resp = self.model.predict(new_samples)
return resp.ravel().reshape(-1, self.class_n).argmax(1)
2012-10-17 07:18:30 +08:00
class SVM(LetterStatModel):
def __init__(self):
self.model = cv.ml.SVM_create()
2012-10-17 07:18:30 +08:00
def train(self, samples, responses):
self.model.setType(cv.ml.SVM_C_SVC)
self.model.setC(1)
self.model.setKernel(cv.ml.SVM_RBF)
2016-02-04 22:12:32 +08:00
self.model.setGamma(.1)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
2012-10-17 07:18:30 +08:00
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
2012-10-17 07:18:30 +08:00
class MLP(LetterStatModel):
def __init__(self):
self.model = cv.ml.ANN_MLP_create()
2012-10-17 07:18:30 +08:00
def train(self, samples, responses):
_sample_n, var_n = samples.shape
2012-10-17 07:18:30 +08:00
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
self.model.setLayerSizes(layer_sizes)
self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
2016-02-04 22:12:32 +08:00
self.model.setBackpropMomentumScale(0.0)
self.model.setBackpropWeightScale(0.001)
self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
2012-10-17 07:18:30 +08:00
def predict(self, samples):
_ret, resp = self.model.predict(samples)
2012-10-17 07:18:30 +08:00
return resp.argmax(-1)
2012-10-17 07:18:30 +08:00
if __name__ == '__main__':
import getopt
import sys
print(__doc__)
2012-10-17 07:18:30 +08:00
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
args = dict(args)
args.setdefault('--model', 'svm')
2018-11-14 23:56:21 +08:00
args.setdefault('--data', 'letter-recognition.data')
2012-10-17 07:18:30 +08:00
2018-11-14 23:56:21 +08:00
datafile = cv.samples.findFile(args['--data'])
print('loading data %s ...' % datafile)
samples, responses = load_base(datafile)
2012-10-17 07:18:30 +08:00
Model = models[args['--model']]
model = Model()
train_n = int(len(samples)*model.train_ratio)
if '--load' in args:
fn = args['--load']
print('loading model from %s ...' % fn)
2012-10-17 07:18:30 +08:00
model.load(fn)
else:
print('training %s ...' % Model.__name__)
2012-10-17 07:18:30 +08:00
model.train(samples[:train_n], responses[:train_n])
print('testing...')
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n].astype(int))
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:].astype(int))
2012-10-17 07:18:30 +08:00
print('train rate: %f test rate: %f' % (train_rate*100, test_rate*100))
2012-10-17 07:18:30 +08:00
if '--save' in args:
fn = args['--save']
print('saving model to %s ...' % fn)
2012-10-17 07:18:30 +08:00
model.save(fn)
cv.destroyAllWindows()