mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 19:54:18 +08:00
225 lines
9.5 KiB
Plaintext
225 lines
9.5 KiB
Plaintext
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <cuda_fp16.h>
|
||
|
|
||
|
#include "math.hpp"
|
||
|
#include "grid_stride_range.hpp"
|
||
|
#include "execution.hpp"
|
||
|
#include "vector_traits.hpp"
|
||
|
|
||
|
#include "../cuda4dnn/csl/stream.hpp"
|
||
|
#include "../cuda4dnn/csl/span.hpp"
|
||
|
|
||
|
#include <opencv2/core.hpp>
|
||
|
|
||
|
using namespace cv::dnn::cuda4dnn::csl;
|
||
|
using namespace cv::dnn::cuda4dnn::csl::device;
|
||
|
|
||
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||
|
|
||
|
namespace raw {
|
||
|
template <class T, std::size_t N>
|
||
|
__global__ void eltwise_max_2_vec(Span<T> output, View<T> x, View<T> y) {
|
||
|
using vector_type = get_vector_type_t<T, N>;
|
||
|
|
||
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
||
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
||
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
||
|
|
||
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
||
|
vector_type vec_x, vec_y;
|
||
|
v_load(vec_x, x_vPtr[i]);
|
||
|
v_load(vec_y, y_vPtr[i]);
|
||
|
|
||
|
for (int j = 0; j < vector_type::size(); j++) {
|
||
|
using device::max;
|
||
|
vec_x.data[j] = max(vec_x.data[j], vec_y.data[j]);
|
||
|
}
|
||
|
|
||
|
v_store(output_vPtr[i], vec_x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
__global__ void eltwise_sum_2_vec(Span<T> output, View<T> x, View<T> y) {
|
||
|
using vector_type = get_vector_type_t<T, N>;
|
||
|
|
||
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
||
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
||
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
||
|
|
||
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
||
|
vector_type vec_x, vec_y;
|
||
|
v_load(vec_x, x_vPtr[i]);
|
||
|
v_load(vec_y, y_vPtr[i]);
|
||
|
|
||
|
for (int j = 0; j < vector_type::size(); j++)
|
||
|
vec_x.data[j] = vec_x.data[j] + vec_y.data[j];
|
||
|
|
||
|
v_store(output_vPtr[i], vec_x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
__global__ void eltwise_sum_coeff_2_vec(Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
||
|
using vector_type = get_vector_type_t<T, N>;
|
||
|
|
||
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
||
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
||
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
||
|
|
||
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
||
|
vector_type vec_x, vec_y;
|
||
|
v_load(vec_x, x_vPtr[i]);
|
||
|
v_load(vec_y, y_vPtr[i]);
|
||
|
|
||
|
for (int j = 0; j < vector_type::size(); j++)
|
||
|
vec_x.data[j] = coeff_x * vec_x.data[j] + coeff_y * vec_y.data[j];
|
||
|
|
||
|
v_store(output_vPtr[i], vec_x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
__global__ void eltwise_prod_2_vec(Span<T> output, View<T> x, View<T> y) {
|
||
|
using vector_type = get_vector_type_t<T, N>;
|
||
|
|
||
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
||
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
||
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
||
|
|
||
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
||
|
vector_type vec_x, vec_y;
|
||
|
v_load(vec_x, x_vPtr[i]);
|
||
|
v_load(vec_y, y_vPtr[i]);
|
||
|
|
||
|
for (int j = 0; j < vector_type::size(); j++)
|
||
|
vec_x.data[j] = vec_x.data[j] * vec_y.data[j];
|
||
|
|
||
|
v_store(output_vPtr[i], vec_x);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
void launch_vectorized_eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(is_fully_aligned<T>(output, N));
|
||
|
CV_Assert(is_fully_aligned<T>(x, N));
|
||
|
CV_Assert(is_fully_aligned<T>(y, N));
|
||
|
|
||
|
auto kernel = raw::eltwise_max_2_vec<T, N>;
|
||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
||
|
launch_kernel(kernel, policy, output, x, y);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(x.size() == y.size());
|
||
|
CV_Assert(x.size() == output.size());
|
||
|
|
||
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||
|
launch_vectorized_eltwise_max_2<T, 4>(stream, output, x, y);
|
||
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||
|
launch_vectorized_eltwise_max_2<T, 2>(stream, output, x, y);
|
||
|
} else {
|
||
|
launch_vectorized_eltwise_max_2<T, 1>(stream, output, x, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||
|
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
void launch_vectorized_eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(is_fully_aligned<T>(output, N));
|
||
|
CV_Assert(is_fully_aligned<T>(x, N));
|
||
|
CV_Assert(is_fully_aligned<T>(y, N));
|
||
|
|
||
|
auto kernel = raw::eltwise_sum_2_vec<T, N>;
|
||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
||
|
launch_kernel(kernel, policy, output, x, y);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(x.size() == y.size());
|
||
|
CV_Assert(x.size() == output.size());
|
||
|
|
||
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||
|
launch_vectorized_eltwise_sum_2<T, 4>(stream, output, x, y);
|
||
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||
|
launch_vectorized_eltwise_sum_2<T, 2>(stream, output, x, y);
|
||
|
} else {
|
||
|
launch_vectorized_eltwise_sum_2<T, 1>(stream, output, x, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||
|
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
void launch_vectorized_eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
||
|
CV_Assert(is_fully_aligned<T>(output, N));
|
||
|
CV_Assert(is_fully_aligned<T>(x, N));
|
||
|
CV_Assert(is_fully_aligned<T>(y, N));
|
||
|
|
||
|
auto kernel = raw::eltwise_sum_coeff_2_vec<T, N>;
|
||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
||
|
launch_kernel(kernel, policy, output, coeff_x, x, coeff_y, y);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
||
|
CV_Assert(x.size() == y.size());
|
||
|
CV_Assert(x.size() == output.size());
|
||
|
|
||
|
if (static_cast<float>(coeff_x) == 1.0f && static_cast<float>(coeff_y) == 1.0f) {
|
||
|
eltwise_sum_2(stream, output, x, y);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||
|
launch_vectorized_eltwise_sum_coeff_2<T, 4>(stream, output, coeff_x, x, coeff_y, y);
|
||
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||
|
launch_vectorized_eltwise_sum_coeff_2<T, 2>(stream, output, coeff_x, x, coeff_y, y);
|
||
|
} else {
|
||
|
launch_vectorized_eltwise_sum_coeff_2<T, 1>(stream, output, coeff_x, x, coeff_y, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
|
||
|
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
|
||
|
|
||
|
template <class T, std::size_t N>
|
||
|
void launch_vectorized_eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(is_fully_aligned<T>(output, N));
|
||
|
CV_Assert(is_fully_aligned<T>(x, N));
|
||
|
CV_Assert(is_fully_aligned<T>(y, N));
|
||
|
|
||
|
auto kernel = raw::eltwise_prod_2_vec<T, N>;
|
||
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
||
|
launch_kernel(kernel, policy, output, x, y);
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||
|
CV_Assert(x.size() == y.size());
|
||
|
CV_Assert(x.size() == output.size());
|
||
|
|
||
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||
|
launch_vectorized_eltwise_prod_2<T, 4>(stream, output, x, y);
|
||
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||
|
launch_vectorized_eltwise_prod_2<T, 2>(stream, output, x, y);
|
||
|
} else {
|
||
|
launch_vectorized_eltwise_prod_2<T, 1>(stream, output, x, y);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||
|
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||
|
|
||
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|