opencv/apps/sft/misk/roc_test.py

76 lines
2.7 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import argparse
import sft
import sys, os, os.path, glob, math, cv2
from datetime import datetime
import numpy
# "key" : ( b, g, r)
bgr = { "red" : ( 0, 0, 255),
"green" : ( 0, 255, 0),
"blue" : (255, 0 , 0)}
def call_parser(f, a):
return eval( "sft.parse_" + f + "('" + a + "')")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = 'Plot ROC curve using Caltech mathod of per image detection performance estimation.')
# positional
parser.add_argument("cascade", help = "Path to the tested detector.")
parser.add_argument("input", help = "Image sequence pattern.")
parser.add_argument("annotations", help = "Path to the annotations.")
# optional
parser.add_argument("-m", "--min_scale", dest = "min_scale", type = float, metavar= "fl", help = "Minimum scale to be tested.", default = 0.4)
parser.add_argument("-M", "--max_scale", dest = "max_scale", type = float, metavar= "fl", help = "Maximum scale to be tested.", default = 5.0)
parser.add_argument("-o", "--output", dest = "output", type = str, metavar= "path", help = "Path to store resultiong image.", default = "./roc.png")
parser.add_argument("-n", "--nscales", dest = "nscales", type = int, metavar= "n", help = "Prefered count of scales from min to max.", default = 55)
# required
parser.add_argument("-f", "--anttn-format", dest = "anttn_format", choices = ['inria', 'caltech', "idl"], help = "Annotation file for test sequence.", required = True)
args = parser.parse_args()
samples = call_parser(args.anttn_format, args.annotations)
# where we use nms cv::SCascade::DOLLAR == 2
cascade = cv2.SCascade(args.min_scale, args.max_scale, args.nscales, 2)
xml = cv2.FileStorage(args.cascade, 0)
dom = xml.getFirstTopLevelNode()
assert cascade.load(dom)
pattern = args.input
camera = cv2.VideoCapture(pattern)
frame = 0
while True:
ret, img = camera.read()
if not ret:
break;
name = pattern % (frame,)
qq = pattern.format(frame)
_, tail = os.path.split(name)
boxes = samples[tail]
boxes = sft.norm_acpect_ratio(boxes, 0.5)
frame = frame + 1
rects, confs = cascade.detect(img, rois = None)
dts = sft.convert2detections(rects, confs)
sft.draw_dt(img, dts, bgr["green"])
fp, fn = sft.match(boxes, dts)
print "fp and fn", fp, fn
sft.draw_rects(img, boxes, bgr["blue"], lambda x, y : y)
cv2.imshow("result", img);
if (cv2.waitKey (0) == 27):
break;
# sft.plot_curve()