Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <cuda_fp16.h>
|
|
|
|
|
|
|
|
#include "math.hpp"
|
|
|
|
#include "grid_stride_range.hpp"
|
|
|
|
#include "execution.hpp"
|
|
|
|
#include "vector_traits.hpp"
|
|
|
|
|
|
|
|
#include "../cuda4dnn/csl/stream.hpp"
|
|
|
|
#include "../cuda4dnn/csl/span.hpp"
|
|
|
|
|
|
|
|
#include <opencv2/core.hpp>
|
|
|
|
|
|
|
|
using namespace cv::dnn::cuda4dnn::csl;
|
|
|
|
using namespace cv::dnn::cuda4dnn::csl::device;
|
|
|
|
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
|
|
|
|
|
|
|
namespace raw {
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
__global__ void eltwise_max_2_vec(Span<T> output, View<T> x, View<T> y) {
|
|
|
|
using vector_type = get_vector_type_t<T, N>;
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
|
|
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
|
|
|
|
|
|
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
|
|
|
vector_type vec_x, vec_y;
|
|
|
|
v_load(vec_x, x_vPtr[i]);
|
|
|
|
v_load(vec_y, y_vPtr[i]);
|
|
|
|
|
|
|
|
for (int j = 0; j < vector_type::size(); j++) {
|
|
|
|
using device::max;
|
|
|
|
vec_x.data[j] = max(vec_x.data[j], vec_y.data[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
v_store(output_vPtr[i], vec_x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
__global__ void eltwise_sum_2_vec(Span<T> output, View<T> x, View<T> y) {
|
|
|
|
using vector_type = get_vector_type_t<T, N>;
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
|
|
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
|
|
|
|
|
|
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
|
|
|
vector_type vec_x, vec_y;
|
|
|
|
v_load(vec_x, x_vPtr[i]);
|
|
|
|
v_load(vec_y, y_vPtr[i]);
|
|
|
|
|
|
|
|
for (int j = 0; j < vector_type::size(); j++)
|
|
|
|
vec_x.data[j] = vec_x.data[j] + vec_y.data[j];
|
|
|
|
|
|
|
|
v_store(output_vPtr[i], vec_x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
__global__ void eltwise_sum_coeff_2_vec(Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
|
|
|
using vector_type = get_vector_type_t<T, N>;
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
|
|
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
|
|
|
|
|
|
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
|
|
|
vector_type vec_x, vec_y;
|
|
|
|
v_load(vec_x, x_vPtr[i]);
|
|
|
|
v_load(vec_y, y_vPtr[i]);
|
|
|
|
|
|
|
|
for (int j = 0; j < vector_type::size(); j++)
|
|
|
|
vec_x.data[j] = coeff_x * vec_x.data[j] + coeff_y * vec_y.data[j];
|
|
|
|
|
|
|
|
v_store(output_vPtr[i], vec_x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
__global__ void eltwise_prod_2_vec(Span<T> output, View<T> x, View<T> y) {
|
|
|
|
using vector_type = get_vector_type_t<T, N>;
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
|
|
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
|
|
|
|
|
|
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
|
|
|
vector_type vec_x, vec_y;
|
|
|
|
v_load(vec_x, x_vPtr[i]);
|
|
|
|
v_load(vec_y, y_vPtr[i]);
|
|
|
|
|
|
|
|
for (int j = 0; j < vector_type::size(); j++)
|
|
|
|
vec_x.data[j] = vec_x.data[j] * vec_y.data[j];
|
|
|
|
|
|
|
|
v_store(output_vPtr[i], vec_x);
|
|
|
|
}
|
|
|
|
}
|
2019-12-06 23:58:36 +08:00
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
__global__ void eltwise_div_2_vec(Span<T> output, View<T> x, View<T> y) {
|
|
|
|
using vector_type = get_vector_type_t<T, N>;
|
|
|
|
|
|
|
|
auto output_vPtr = vector_type::get_pointer(output.data());
|
|
|
|
auto x_vPtr = vector_type::get_pointer(x.data());
|
|
|
|
auto y_vPtr = vector_type::get_pointer(y.data());
|
|
|
|
|
|
|
|
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
|
|
|
|
vector_type vec_x, vec_y;
|
|
|
|
v_load(vec_x, x_vPtr[i]);
|
|
|
|
v_load(vec_y, y_vPtr[i]);
|
|
|
|
|
|
|
|
for (int j = 0; j < vector_type::size(); j++)
|
|
|
|
vec_x.data[j] = vec_x.data[j] / vec_y.data[j];
|
|
|
|
|
|
|
|
v_store(output_vPtr[i], vec_x);
|
|
|
|
}
|
|
|
|
}
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
void launch_vectorized_eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(is_fully_aligned<T>(output, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(x, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(y, N));
|
|
|
|
|
|
|
|
auto kernel = raw::eltwise_max_2_vec<T, N>;
|
|
|
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
|
|
|
launch_kernel(kernel, policy, output, x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(x.size() == y.size());
|
|
|
|
CV_Assert(x.size() == output.size());
|
|
|
|
|
|
|
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
|
|
|
launch_vectorized_eltwise_max_2<T, 4>(stream, output, x, y);
|
|
|
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
|
|
|
launch_vectorized_eltwise_max_2<T, 2>(stream, output, x, y);
|
|
|
|
} else {
|
|
|
|
launch_vectorized_eltwise_max_2<T, 1>(stream, output, x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
|
|
|
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
void launch_vectorized_eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(is_fully_aligned<T>(output, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(x, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(y, N));
|
|
|
|
|
|
|
|
auto kernel = raw::eltwise_sum_2_vec<T, N>;
|
|
|
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
|
|
|
launch_kernel(kernel, policy, output, x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(x.size() == y.size());
|
|
|
|
CV_Assert(x.size() == output.size());
|
|
|
|
|
|
|
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
|
|
|
launch_vectorized_eltwise_sum_2<T, 4>(stream, output, x, y);
|
|
|
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
|
|
|
launch_vectorized_eltwise_sum_2<T, 2>(stream, output, x, y);
|
|
|
|
} else {
|
|
|
|
launch_vectorized_eltwise_sum_2<T, 1>(stream, output, x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
|
|
|
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
void launch_vectorized_eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
|
|
|
CV_Assert(is_fully_aligned<T>(output, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(x, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(y, N));
|
|
|
|
|
|
|
|
auto kernel = raw::eltwise_sum_coeff_2_vec<T, N>;
|
|
|
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
|
|
|
launch_kernel(kernel, policy, output, coeff_x, x, coeff_y, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
|
|
|
CV_Assert(x.size() == y.size());
|
|
|
|
CV_Assert(x.size() == output.size());
|
|
|
|
|
|
|
|
if (static_cast<float>(coeff_x) == 1.0f && static_cast<float>(coeff_y) == 1.0f) {
|
|
|
|
eltwise_sum_2(stream, output, x, y);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
|
|
|
launch_vectorized_eltwise_sum_coeff_2<T, 4>(stream, output, coeff_x, x, coeff_y, y);
|
|
|
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
|
|
|
launch_vectorized_eltwise_sum_coeff_2<T, 2>(stream, output, coeff_x, x, coeff_y, y);
|
|
|
|
} else {
|
|
|
|
launch_vectorized_eltwise_sum_coeff_2<T, 1>(stream, output, coeff_x, x, coeff_y, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
|
|
|
|
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
|
|
|
|
|
|
|
|
template <class T, std::size_t N>
|
|
|
|
void launch_vectorized_eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(is_fully_aligned<T>(output, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(x, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(y, N));
|
|
|
|
|
|
|
|
auto kernel = raw::eltwise_prod_2_vec<T, N>;
|
|
|
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
|
|
|
launch_kernel(kernel, policy, output, x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(x.size() == y.size());
|
|
|
|
CV_Assert(x.size() == output.size());
|
|
|
|
|
|
|
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
|
|
|
launch_vectorized_eltwise_prod_2<T, 4>(stream, output, x, y);
|
|
|
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
|
|
|
launch_vectorized_eltwise_prod_2<T, 2>(stream, output, x, y);
|
|
|
|
} else {
|
|
|
|
launch_vectorized_eltwise_prod_2<T, 1>(stream, output, x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
|
|
|
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
|
|
|
|
2019-12-06 23:58:36 +08:00
|
|
|
template <class T, std::size_t N>
|
|
|
|
void launch_vectorized_eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(is_fully_aligned<T>(output, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(x, N));
|
|
|
|
CV_Assert(is_fully_aligned<T>(y, N));
|
|
|
|
|
|
|
|
auto kernel = raw::eltwise_div_2_vec<T, N>;
|
|
|
|
auto policy = make_policy(kernel, output.size() / N, 0, stream);
|
|
|
|
launch_kernel(kernel, policy, output, x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
void eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
|
|
|
CV_Assert(x.size() == y.size());
|
|
|
|
CV_Assert(x.size() == output.size());
|
|
|
|
|
|
|
|
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
|
|
|
launch_vectorized_eltwise_div_2<T, 4>(stream, output, x, y);
|
|
|
|
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
|
|
|
launch_vectorized_eltwise_div_2<T, 2>(stream, output, x, y);
|
|
|
|
} else {
|
|
|
|
launch_vectorized_eltwise_div_2<T, 1>(stream, output, x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template void eltwise_div_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
|
|
|
template void eltwise_div_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
|
|
|
|
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|