2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_TEST_COMMON_HPP__
|
|
|
|
#define __OPENCV_TEST_COMMON_HPP__
|
|
|
|
|
2018-08-30 22:53:41 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#endif
|
|
|
|
|
2018-08-02 22:59:45 +08:00
|
|
|
namespace cv { namespace dnn {
|
|
|
|
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|
|
|
static inline void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
|
|
|
{
|
|
|
|
switch (v) {
|
|
|
|
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
|
|
|
|
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
|
|
|
|
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return;
|
|
|
|
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
|
|
|
|
} // don't use "default:" to emit compiler warnings
|
2018-11-15 04:25:23 +08:00
|
|
|
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
2018-08-02 22:59:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void PrintTo(const cv::dnn::Target& v, std::ostream* os)
|
|
|
|
{
|
|
|
|
switch (v) {
|
|
|
|
case DNN_TARGET_CPU: *os << "CPU"; return;
|
|
|
|
case DNN_TARGET_OPENCL: *os << "OCL"; return;
|
|
|
|
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
|
|
|
|
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
|
2018-11-16 22:09:54 +08:00
|
|
|
case DNN_TARGET_FPGA: *os << "FPGA"; return;
|
2018-08-02 22:59:45 +08:00
|
|
|
} // don't use "default:" to emit compiler warnings
|
2018-11-15 04:25:23 +08:00
|
|
|
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
|
2018-08-02 22:59:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
using opencv_test::tuple;
|
|
|
|
using opencv_test::get;
|
|
|
|
static inline void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
|
|
|
|
{
|
|
|
|
PrintTo(get<0>(v), os);
|
|
|
|
*os << "/";
|
|
|
|
PrintTo(get<1>(v), os);
|
|
|
|
}
|
|
|
|
|
|
|
|
CV__DNN_EXPERIMENTAL_NS_END
|
|
|
|
}} // namespace
|
|
|
|
|
|
|
|
|
2018-06-05 17:48:35 +08:00
|
|
|
static inline const std::string &getOpenCVExtraDir()
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
return cvtest::TS::ptr()->get_data_path();
|
|
|
|
}
|
|
|
|
|
2018-06-05 17:48:35 +08:00
|
|
|
static inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "",
|
2017-06-26 18:35:51 +08:00
|
|
|
double l1 = 0.00001, double lInf = 0.0001)
|
|
|
|
{
|
|
|
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
|
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
|
|
}
|
|
|
|
|
2018-04-18 22:26:54 +08:00
|
|
|
static std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
|
|
|
{
|
|
|
|
EXPECT_EQ(m.type(), CV_32FC1);
|
|
|
|
EXPECT_EQ(m.dims, 2);
|
|
|
|
EXPECT_EQ(m.cols, 4);
|
|
|
|
|
|
|
|
std::vector<cv::Rect2d> boxes(m.rows);
|
|
|
|
for (int i = 0; i < m.rows; ++i)
|
|
|
|
{
|
|
|
|
CV_Assert(m.row(i).isContinuous());
|
|
|
|
const float* data = m.ptr<float>(i);
|
|
|
|
double l = data[0], t = data[1], r = data[2], b = data[3];
|
|
|
|
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
|
|
|
|
}
|
|
|
|
return boxes;
|
|
|
|
}
|
|
|
|
|
2018-06-05 17:48:35 +08:00
|
|
|
static inline void normAssertDetections(const std::vector<int>& refClassIds,
|
2018-04-18 22:26:54 +08:00
|
|
|
const std::vector<float>& refScores,
|
|
|
|
const std::vector<cv::Rect2d>& refBoxes,
|
|
|
|
const std::vector<int>& testClassIds,
|
|
|
|
const std::vector<float>& testScores,
|
|
|
|
const std::vector<cv::Rect2d>& testBoxes,
|
|
|
|
const char *comment = "", double confThreshold = 0.0,
|
|
|
|
double scores_diff = 1e-5, double boxes_iou_diff = 1e-4)
|
|
|
|
{
|
|
|
|
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
|
|
|
|
for (int i = 0; i < testBoxes.size(); ++i)
|
|
|
|
{
|
|
|
|
double testScore = testScores[i];
|
|
|
|
if (testScore < confThreshold)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
int testClassId = testClassIds[i];
|
|
|
|
const cv::Rect2d& testBox = testBoxes[i];
|
|
|
|
bool matched = false;
|
|
|
|
for (int j = 0; j < refBoxes.size() && !matched; ++j)
|
|
|
|
{
|
|
|
|
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
|
|
|
|
std::abs(testScore - refScores[j]) < scores_diff)
|
|
|
|
{
|
|
|
|
double interArea = (testBox & refBoxes[j]).area();
|
|
|
|
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
|
|
|
|
if (std::abs(iou - 1.0) < boxes_iou_diff)
|
|
|
|
{
|
|
|
|
matched = true;
|
|
|
|
matchedRefBoxes[j] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!matched)
|
|
|
|
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
|
|
|
|
testClassId, testScore) << testBox << std::endl;
|
|
|
|
EXPECT_TRUE(matched) << comment;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check unmatched reference detections.
|
|
|
|
for (int i = 0; i < refBoxes.size(); ++i)
|
|
|
|
{
|
|
|
|
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
|
|
|
|
{
|
|
|
|
std::cout << cv::format("Unmatched reference: class %d score %f box ",
|
|
|
|
refClassIds[i], refScores[i]) << refBoxes[i] << std::endl;
|
|
|
|
EXPECT_LE(refScores[i], confThreshold) << comment;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
|
|
|
// where N is a number of detections and an every detection is represented by
|
|
|
|
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
2018-06-05 17:48:35 +08:00
|
|
|
static inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment = "",
|
2018-04-18 22:26:54 +08:00
|
|
|
double confThreshold = 0.0, double scores_diff = 1e-5,
|
|
|
|
double boxes_iou_diff = 1e-4)
|
|
|
|
{
|
|
|
|
CV_Assert(ref.total() % 7 == 0);
|
|
|
|
CV_Assert(out.total() % 7 == 0);
|
|
|
|
ref = ref.reshape(1, ref.total() / 7);
|
|
|
|
out = out.reshape(1, out.total() / 7);
|
|
|
|
|
|
|
|
cv::Mat refClassIds, testClassIds;
|
|
|
|
ref.col(1).convertTo(refClassIds, CV_32SC1);
|
|
|
|
out.col(1).convertTo(testClassIds, CV_32SC1);
|
|
|
|
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
|
|
|
|
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
|
|
|
|
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
|
|
|
|
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
|
|
|
|
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
|
|
|
}
|
|
|
|
|
2018-06-05 17:48:35 +08:00
|
|
|
static inline bool readFileInMemory(const std::string& filename, std::string& content)
|
2017-10-28 00:01:41 +08:00
|
|
|
{
|
|
|
|
std::ios::openmode mode = std::ios::in | std::ios::binary;
|
|
|
|
std::ifstream ifs(filename.c_str(), mode);
|
|
|
|
if (!ifs.is_open())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
content.clear();
|
|
|
|
|
|
|
|
ifs.seekg(0, std::ios::end);
|
|
|
|
content.reserve(ifs.tellg());
|
|
|
|
ifs.seekg(0, std::ios::beg);
|
|
|
|
|
|
|
|
content.assign((std::istreambuf_iterator<char>(ifs)),
|
|
|
|
std::istreambuf_iterator<char>());
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-08-30 22:53:41 +08:00
|
|
|
namespace opencv_test {
|
|
|
|
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
2018-11-15 04:25:23 +08:00
|
|
|
static inline
|
2018-12-05 23:11:45 +08:00
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
2018-08-30 22:53:41 +08:00
|
|
|
bool withInferenceEngine = true,
|
|
|
|
bool withHalide = false,
|
|
|
|
bool withCpuOCV = true
|
|
|
|
)
|
|
|
|
{
|
2018-12-05 23:11:45 +08:00
|
|
|
std::vector< tuple<Backend, Target> > targets;
|
|
|
|
std::vector< Target > available;
|
2018-08-30 22:53:41 +08:00
|
|
|
if (withHalide)
|
|
|
|
{
|
2018-12-05 23:11:45 +08:00
|
|
|
available = getAvailableTargets(DNN_BACKEND_HALIDE);
|
|
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
|
|
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
|
2018-08-30 22:53:41 +08:00
|
|
|
}
|
|
|
|
if (withInferenceEngine)
|
|
|
|
{
|
2018-12-05 23:11:45 +08:00
|
|
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
|
|
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
|
|
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i));
|
2018-08-30 22:53:41 +08:00
|
|
|
}
|
|
|
|
{
|
2018-12-05 23:11:45 +08:00
|
|
|
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
|
|
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
2018-12-05 23:31:14 +08:00
|
|
|
{
|
|
|
|
if (!withCpuOCV && *i == DNN_TARGET_CPU)
|
|
|
|
continue;
|
2018-12-05 23:11:45 +08:00
|
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
|
2018-12-05 23:31:14 +08:00
|
|
|
}
|
2018-08-30 22:53:41 +08:00
|
|
|
}
|
2018-12-05 23:31:14 +08:00
|
|
|
if (targets.empty()) // validate at least CPU mode
|
|
|
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
|
2018-08-30 22:53:41 +08:00
|
|
|
return testing::ValuesIn(targets);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2018-11-15 04:25:23 +08:00
|
|
|
|
|
|
|
namespace opencv_test {
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
|
|
|
class DNNTestLayer : public TestWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
dnn::Backend backend;
|
|
|
|
dnn::Target target;
|
|
|
|
double default_l1, default_lInf;
|
|
|
|
|
|
|
|
DNNTestLayer()
|
|
|
|
{
|
|
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
getDefaultThresholds(backend, target, &default_l1, &default_lInf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void getDefaultThresholds(int backend, int target, double* l1, double* lInf)
|
|
|
|
{
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
*l1 = 4e-3;
|
|
|
|
*lInf = 2e-2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*l1 = 1e-5;
|
|
|
|
*lInf = 1e-4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-05 23:11:45 +08:00
|
|
|
static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0)
|
|
|
|
{
|
2018-11-15 04:25:23 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018030000
|
|
|
|
if (inp && ref && inp->size[0] != 1)
|
|
|
|
{
|
|
|
|
// Myriad plugin supports only batch size 1. Slice a single sample.
|
|
|
|
if (inp->size[0] == ref->size[0])
|
|
|
|
{
|
|
|
|
std::vector<cv::Range> range(inp->dims, Range::all());
|
|
|
|
range[0] = Range(0, 1);
|
|
|
|
*inp = inp->operator()(range);
|
|
|
|
|
|
|
|
range = std::vector<cv::Range>(ref->dims, Range::all());
|
|
|
|
range[0] = Range(0, 1);
|
|
|
|
*ref = ref->operator()(range);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
throw SkipTestException("Myriad plugin supports only batch size 1");
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (inp && ref && inp->dims == 4 && ref->dims == 4 &&
|
|
|
|
inp->size[0] != 1 && inp->size[0] != ref->size[0])
|
|
|
|
throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin");
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void checkBackend(Mat* inp = 0, Mat* ref = 0)
|
|
|
|
{
|
|
|
|
checkBackend(backend, target, inp, ref);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
#endif
|