opencv/modules/imgproc/src/geometry.cpp

596 lines
18 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CV_IMPL CvRect
cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
{
if( rect1 && rect2 )
{
CvRect max_rect;
int a, b;
max_rect.x = a = rect1->x;
b = rect2->x;
if( max_rect.x > b )
max_rect.x = b;
max_rect.width = a += rect1->width;
b += rect2->width;
if( max_rect.width < b )
max_rect.width = b;
max_rect.width -= max_rect.x;
max_rect.y = a = rect1->y;
b = rect2->y;
if( max_rect.y > b )
max_rect.y = b;
max_rect.height = a += rect1->height;
b += rect2->height;
if( max_rect.height < b )
max_rect.height = b;
max_rect.height -= max_rect.y;
return max_rect;
}
else if( rect1 )
return *rect1;
else if( rect2 )
return *rect2;
else
return cvRect(0,0,0,0);
}
CV_IMPL void
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
{
if( !pt )
CV_Error( CV_StsNullPtr, "NULL vertex array pointer" );
cv::RotatedRect(box).points((cv::Point2f*)pt);
}
double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist )
{
CV_INSTRUMENT_REGION()
double result = 0;
Mat contour = _contour.getMat();
int i, total = contour.checkVector(2), counter = 0;
int depth = contour.depth();
CV_Assert( total >= 0 && (depth == CV_32S || depth == CV_32F));
2012-10-17 15:12:04 +08:00
bool is_float = depth == CV_32F;
double min_dist_num = FLT_MAX, min_dist_denom = 1;
Point ip(cvRound(pt.x), cvRound(pt.y));
if( total == 0 )
return measureDist ? -DBL_MAX : -1;
const Point* cnt = contour.ptr<Point>();
const Point2f* cntf = (const Point2f*)cnt;
if( !is_float && !measureDist && ip.x == pt.x && ip.y == pt.y )
{
// the fastest "purely integer" branch
Point v0, v = cnt[total-1];
for( i = 0; i < total; i++ )
{
int dist;
v0 = v;
v = cnt[i];
if( (v0.y <= ip.y && v.y <= ip.y) ||
(v0.y > ip.y && v.y > ip.y) ||
(v0.x < ip.x && v.x < ip.x) )
{
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
return 0;
continue;
}
dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
return 0;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -1 : 1;
}
else
{
Point2f v0, v;
Point iv;
if( is_float )
{
v = cntf[total-1];
}
else
{
v = cnt[total-1];
}
if( !measureDist )
{
for( i = 0; i < total; i++ )
{
double dist;
v0 = v;
if( is_float )
v = cntf[i];
else
v = cnt[i];
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
{
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
return 0;
continue;
}
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
return 0;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -1 : 1;
}
else
{
for( i = 0; i < total; i++ )
{
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
2012-10-17 15:12:04 +08:00
v0 = v;
if( is_float )
v = cntf[i];
else
v = cnt[i];
2012-10-17 15:12:04 +08:00
dx = v.x - v0.x; dy = v.y - v0.y;
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
dx2 = pt.x - v.x; dy2 = pt.y - v.y;
2012-10-17 15:12:04 +08:00
if( dx1*dx + dy1*dy <= 0 )
dist_num = dx1*dx1 + dy1*dy1;
else if( dx2*dx + dy2*dy >= 0 )
dist_num = dx2*dx2 + dy2*dy2;
else
{
dist_num = (dy1*dx - dx1*dy);
dist_num *= dist_num;
dist_denom = dx*dx + dy*dy;
}
if( dist_num*min_dist_denom < min_dist_num*dist_denom )
{
min_dist_num = dist_num;
min_dist_denom = dist_denom;
if( min_dist_num == 0 )
break;
}
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
continue;
dist_num = dy1*dx - dx1*dy;
if( dy < 0 )
dist_num = -dist_num;
counter += dist_num > 0;
}
result = std::sqrt(min_dist_num/min_dist_denom);
if( counter % 2 == 0 )
result = -result;
}
}
return result;
}
CV_IMPL double
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
{
cv::AutoBuffer<double> abuf;
cv::Mat contour = cv::cvarrToMat(_contour, false, false, 0, &abuf);
return cv::pointPolygonTest(contour, pt, measure_dist != 0);
}
/*
This code is described in "Computational Geometry in C" (Second Edition),
Chapter 7. It is not written to be comprehensible without the
explanation in that book.
2012-10-17 15:12:04 +08:00
Written by Joseph O'Rourke.
Last modified: December 1997
Questions to orourke@cs.smith.edu.
--------------------------------------------------------------------
This code is Copyright 1997 by Joseph O'Rourke. It may be freely
redistributed in its entirety provided that this copyright notice is
not removed.
--------------------------------------------------------------------
*/
namespace cv
{
typedef enum { Pin, Qin, Unknown } tInFlag;
static int areaSign( Point2f a, Point2f b, Point2f c )
{
static const double eps = 1e-5;
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y);
return area2 > eps ? 1 : area2 < -eps ? -1 : 0;
}
//---------------------------------------------------------------------
// Returns true iff point c lies on the closed segement ab.
// Assumes it is already known that abc are collinear.
//---------------------------------------------------------------------
static bool between( Point2f a, Point2f b, Point2f c )
{
Point2f ba, ca;
2012-10-17 15:12:04 +08:00
// If ab not vertical, check betweenness on x; else on y.
if ( a.x != b.x )
return ((a.x <= c.x) && (c.x <= b.x)) ||
((a.x >= c.x) && (c.x >= b.x));
else
return ((a.y <= c.y) && (c.y <= b.y)) ||
((a.y >= c.y) && (c.y >= b.y));
}
static char parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
{
char code = 'e';
if( areaSign(a, b, c) != 0 )
code = '0';
else if( between(a, b, c) && between(a, b, d))
p = c, q = d;
else if( between(c, d, a) && between(c, d, b))
p = a, q = b;
else if( between(a, b, c) && between(c, d, b))
p = c, q = b;
else if( between(a, b, c) && between(c, d, a))
p = c, q = a;
else if( between(a, b, d) && between(c, d, b))
p = d, q = b;
else if( between(a, b, d) && between(c, d, a))
p = d, q = a;
else
code = '0';
return code;
}
//---------------------------------------------------------------------
// segSegInt: Finds the point of intersection p between two closed
// segments ab and cd. Returns p and a char with the following meaning:
// 'e': The segments collinearly overlap, sharing a point.
// 'v': An endpoint (vertex) of one segment is on the other segment,
// but 'e' doesn't hold.
// '1': The segments intersect properly (i.e., they share a point and
// neither 'v' nor 'e' holds).
// '0': The segments do not intersect (i.e., they share no points).
// Note that two collinear segments that share just one point, an endpoint
// of each, returns 'e' rather than 'v' as one might expect.
//---------------------------------------------------------------------
static char segSegInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
{
double s, t; // The two parameters of the parametric eqns.
double num, denom; // Numerator and denoninator of equations.
char code = '?'; // Return char characterizing intersection.
2012-10-17 15:12:04 +08:00
denom = a.x * (double)( d.y - c.y ) +
b.x * (double)( c.y - d.y ) +
d.x * (double)( b.y - a.y ) +
c.x * (double)( a.y - b.y );
2012-10-17 15:12:04 +08:00
// If denom is zero, then segments are parallel: handle separately.
if (denom == 0.0)
return parallelInt(a, b, c, d, p, q);
2012-10-17 15:12:04 +08:00
num = a.x * (double)( d.y - c.y ) +
c.x * (double)( a.y - d.y ) +
d.x * (double)( c.y - a.y );
if ( (num == 0.0) || (num == denom) ) code = 'v';
s = num / denom;
2012-10-17 15:12:04 +08:00
num = -( a.x * (double)( c.y - b.y ) +
b.x * (double)( a.y - c.y ) +
c.x * (double)( b.y - a.y ) );
if ( (num == 0.0) || (num == denom) ) code = 'v';
t = num / denom;
2012-10-17 15:12:04 +08:00
if ( (0.0 < s) && (s < 1.0) &&
(0.0 < t) && (t < 1.0) )
code = '1';
else if ( (0.0 > s) || (s > 1.0) ||
(0.0 > t) || (t > 1.0) )
code = '0';
2012-10-17 15:12:04 +08:00
p.x = (float)(a.x + s*(b.x - a.x));
p.y = (float)(a.y + s*(b.y - a.y));
2012-10-17 15:12:04 +08:00
return code;
}
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result )
{
if( p != result[-1] )
*result++ = p;
// Update inflag.
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag;
}
//---------------------------------------------------------------------
// Advances and prints out an inside vertex if appropriate.
//---------------------------------------------------------------------
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result )
{
if( inside && v != result[-1] )
*result++ = v;
(*aa)++;
return (a+1) % n;
2012-10-17 15:12:04 +08:00
}
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result )
{
if( p != result[-1] )
*result++ = p;
if( q != result[-1] )
*result++ = q;
}
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m,
Point2f* result, float* _area )
{
Point2f* result0 = result;
// P has n vertices, Q has m vertices.
int a=0, b=0; // indices on P and Q (resp.)
Point2f Origin(0,0);
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.)
bool FirstPoint=true;// Is this the first point? (used to initialize).
Point2f p0; // The first point.
*result++ = Point2f(FLT_MAX, FLT_MAX);
2012-10-17 15:12:04 +08:00
do
{
// Computations of key variables.
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.)
int b1 = (b + m - 1) % m;
2012-10-17 15:12:04 +08:00
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.)
2012-10-17 15:12:04 +08:00
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b).
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A);
2012-10-17 15:12:04 +08:00
// If A & B intersect, update inflag.
Point2f p, q;
int code = segSegInt( P[a1], P[a], Q[b1], Q[b], p, q );
if( code == '1' || code == 'v' )
{
if( inflag == Unknown && FirstPoint )
{
aa = ba = 0;
FirstPoint = false;
p0 = p;
*result++ = p;
}
inflag = inOut( p, inflag, aHB, bHA, result );
}
2012-10-17 15:12:04 +08:00
//-----Advance rules-----
2012-10-17 15:12:04 +08:00
// Special case: A & B overlap and oppositely oriented.
if( code == 'e' && A.ddot(B) < 0 )
{
addSharedSeg( p, q, result );
return (int)(result - result0);
}
2012-10-17 15:12:04 +08:00
// Special case: A & B parallel and separated.
if( cross == 0 && aHB < 0 && bHA < 0 )
return (int)(result - result0);
2012-10-17 15:12:04 +08:00
// Special case: A & B collinear.
else if ( cross == 0 && aHB == 0 && bHA == 0 ) {
// Advance but do not output point.
if ( inflag == Pin )
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
else
a = advance( a, &aa, n, inflag == Pin, P[a], result );
}
2012-10-17 15:12:04 +08:00
// Generic cases.
else if( cross >= 0 )
{
if( bHA > 0)
a = advance( a, &aa, n, inflag == Pin, P[a], result );
else
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
}
else
{
if( aHB > 0)
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
else
a = advance( a, &aa, n, inflag == Pin, P[a], result );
}
// Quit when both adv. indices have cycled, or one has cycled twice.
}
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) );
2012-10-17 15:12:04 +08:00
// Deal with special cases: not implemented.
if( inflag == Unknown )
{
// The boundaries of P and Q do not cross.
// ...
}
2012-10-17 15:12:04 +08:00
int i, nr = (int)(result - result0);
double area = 0;
Point2f prev = result0[nr-1];
for( i = 1; i < nr; i++ )
{
result0[i-1] = result0[i];
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x;
prev = result0[i];
}
2012-10-17 15:12:04 +08:00
*_area = (float)(area*0.5);
2012-10-17 15:12:04 +08:00
if( result0[nr-2] == result0[0] && nr > 1 )
nr--;
return nr-1;
}
2012-10-17 15:12:04 +08:00
}
2012-10-17 15:12:04 +08:00
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested )
{
CV_INSTRUMENT_REGION()
Mat p1 = _p1.getMat(), p2 = _p2.getMat();
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F );
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F );
2012-10-17 15:12:04 +08:00
int n = p1.checkVector(2, p1.depth(), true);
int m = p2.checkVector(2, p2.depth(), true);
2012-10-17 15:12:04 +08:00
CV_Assert( n >= 0 && m >= 0 );
2012-10-17 15:12:04 +08:00
if( n < 2 || m < 2 )
{
_p12.release();
return 0.f;
}
2012-10-17 15:12:04 +08:00
AutoBuffer<Point2f> _result(n*2 + m*2 + 1);
Point2f *fp1 = _result, *fp2 = fp1 + n;
Point2f* result = fp2 + m;
int orientation = 0;
2012-10-17 15:12:04 +08:00
for( int k = 1; k <= 2; k++ )
{
Mat& p = k == 1 ? p1 : p2;
int len = k == 1 ? n : m;
Point2f* dst = k == 1 ? fp1 : fp2;
2012-10-17 15:12:04 +08:00
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst);
p.convertTo(temp, CV_32F);
CV_Assert( temp.ptr<Point2f>() == dst );
Point2f diff0 = dst[0] - dst[len-1];
for( int i = 1; i < len; i++ )
{
double s = diff0.cross(dst[i] - dst[i-1]);
if( s != 0 )
{
if( s < 0 )
{
orientation++;
flip( temp, temp, temp.rows > 1 ? 0 : 1 );
}
break;
}
}
}
2012-10-17 15:12:04 +08:00
float area = 0.f;
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area);
if( nr == 0 )
{
if( !handleNested )
{
_p12.release();
return 0.f;
}
2012-10-17 15:12:04 +08:00
if( pointPolygonTest(_InputArray(fp1, n), fp2[0], false) >= 0 )
{
result = fp2;
nr = m;
}
else if( pointPolygonTest(_InputArray(fp2, m), fp1[0], false) >= 0 )
{
result = fp1;
nr = n;
}
else
{
_p12.release();
return 0.f;
}
area = (float)contourArea(_InputArray(result, nr), false);
}
2012-10-17 15:12:04 +08:00
if( _p12.needed() )
{
Mat temp(nr, 1, CV_32FC2, result);
// if both input contours were reflected,
// let's orient the result as the input vectors
if( orientation == 2 )
flip(temp, temp, 0);
temp.copyTo(_p12);
}
return (float)fabs(area);
}