opencv/modules/ml/src/knearest.cpp

514 lines
15 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "kdtree.hpp"
/****************************************************************************************\
* K-Nearest Neighbors Classifier *
\****************************************************************************************/
namespace cv {
namespace ml {
KNearest::Params::Params(int k, bool isclassifier_, int Emax_)
{
defaultK = k;
isclassifier = isclassifier_;
Emax = Emax_;
}
class KNearestImpl : public KNearest
{
public:
KNearestImpl(const Params& p)
{
params = p;
}
virtual ~KNearestImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getDefaultModelName() const { return "opencv_ml_knn"; }
void clear()
{
samples.release();
responses.release();
}
int getVarCount() const { return samples.cols; }
bool train( const Ptr<TrainData>& data, int flags )
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
if( !update )
{
clear();
}
else
{
CV_Assert( new_samples.cols == samples.cols &&
new_responses.cols == responses.cols );
}
samples.push_back(new_samples);
responses.push_back(new_responses);
return true;
}
void findNearestCore( const Mat& _samples, int k0, const Range& range,
Mat* results, Mat* neighbor_responses,
Mat* dists, float* presult ) const
{
int testidx, baseidx, i, j, d = samples.cols, nsamples = samples.rows;
int testcount = range.end - range.start;
int k = std::min(k0, nsamples);
AutoBuffer<float> buf(testcount*k*2);
float* dbuf = buf;
float* rbuf = dbuf + testcount*k;
const float* rptr = responses.ptr<float>();
for( testidx = 0; testidx < testcount; testidx++ )
{
for( i = 0; i < k; i++ )
{
dbuf[testidx*k + i] = FLT_MAX;
rbuf[testidx*k + i] = 0.f;
}
}
for( baseidx = 0; baseidx < nsamples; baseidx++ )
{
for( testidx = 0; testidx < testcount; testidx++ )
{
const float* v = samples.ptr<float>(baseidx);
const float* u = _samples.ptr<float>(testidx + range.start);
float s = 0;
for( i = 0; i <= d - 4; i += 4 )
{
float t0 = u[i] - v[i], t1 = u[i+1] - v[i+1];
float t2 = u[i+2] - v[i+2], t3 = u[i+3] - v[i+3];
s += t0*t0 + t1*t1 + t2*t2 + t3*t3;
}
for( ; i < d; i++ )
{
float t0 = u[i] - v[i];
s += t0*t0;
}
Cv32suf si;
si.f = (float)s;
Cv32suf* dd = (Cv32suf*)(&dbuf[testidx*k]);
float* nr = &rbuf[testidx*k];
for( i = k; i > 0; i-- )
if( si.i >= dd[i-1].i )
break;
if( i >= k )
continue;
for( j = k-2; j >= i; j-- )
{
dd[j+1].i = dd[j].i;
nr[j+1] = nr[j];
}
dd[i].i = si.i;
nr[i] = rptr[baseidx];
}
}
float result = 0.f;
float inv_scale = 1.f/k;
for( testidx = 0; testidx < testcount; testidx++ )
{
if( neighbor_responses )
{
float* nr = neighbor_responses->ptr<float>(testidx + range.start);
for( j = 0; j < k; j++ )
nr[j] = rbuf[testidx*k + j];
for( ; j < k0; j++ )
nr[j] = 0.f;
}
if( dists )
{
float* dptr = dists->ptr<float>(testidx + range.start);
for( j = 0; j < k; j++ )
dptr[j] = dbuf[testidx*k + j];
for( ; j < k0; j++ )
dptr[j] = 0.f;
}
if( results || testidx+range.start == 0 )
{
if( !params.isclassifier || k == 1 )
{
float s = 0.f;
for( j = 0; j < k; j++ )
s += rbuf[testidx*k + j];
result = (float)(s*inv_scale);
}
else
{
float* rp = rbuf + testidx*k;
for( j = k-1; j > 0; j-- )
{
bool swap_fl = false;
for( i = 0; i < j; i++ )
{
if( rp[i] > rp[i+1] )
{
std::swap(rp[i], rp[i+1]);
swap_fl = true;
}
}
if( !swap_fl )
break;
}
result = rp[0];
int prev_start = 0;
int best_count = 0;
for( j = 1; j <= k; j++ )
{
if( j == k || rp[j] != rp[j-1] )
{
int count = j - prev_start;
if( best_count < count )
{
best_count = count;
result = rp[j-1];
}
prev_start = j;
}
}
}
if( results )
results->at<float>(testidx + range.start) = result;
if( presult && testidx+range.start == 0 )
*presult = result;
}
}
}
struct findKNearestInvoker : public ParallelLoopBody
{
findKNearestInvoker(const KNearestImpl* _p, int _k, const Mat& __samples,
Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult)
{
p = _p;
k = _k;
_samples = &__samples;
_results = __results;
_neighbor_responses = __neighbor_responses;
_dists = __dists;
presult = _presult;
}
void operator()( const Range& range ) const
{
int delta = std::min(range.end - range.start, 256);
for( int start = range.start; start < range.end; start += delta )
{
p->findNearestCore( *_samples, k, Range(start, std::min(start + delta, range.end)),
_results, _neighbor_responses, _dists, presult );
}
}
const KNearestImpl* p;
int k;
const Mat* _samples;
Mat* _results;
Mat* _neighbor_responses;
Mat* _dists;
float* presult;
};
float findNearest( InputArray _samples, int k,
OutputArray _results,
OutputArray _neighborResponses,
OutputArray _dists ) const
{
float result = 0.f;
CV_Assert( 0 < k );
Mat test_samples = _samples.getMat();
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols );
int testcount = test_samples.rows;
if( testcount == 0 )
{
_results.release();
_neighborResponses.release();
_dists.release();
return 0.f;
}
Mat res, nr, d, *pres = 0, *pnr = 0, *pd = 0;
if( _results.needed() )
{
_results.create(testcount, 1, CV_32F);
pres = &(res = _results.getMat());
}
if( _neighborResponses.needed() )
{
_neighborResponses.create(testcount, k, CV_32F);
pnr = &(nr = _neighborResponses.getMat());
}
if( _dists.needed() )
{
_dists.create(testcount, k, CV_32F);
pd = &(d = _dists.getMat());
}
findKNearestInvoker invoker(this, k, test_samples, pres, pnr, pd, &result);
parallel_for_(Range(0, testcount), invoker);
//invoker(Range(0, testcount));
return result;
}
float predict(InputArray inputs, OutputArray outputs, int) const
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
Mat samples;
Mat responses;
Params params;
};
2010-11-03 01:58:22 +08:00
class KNearestKDTreeImpl : public KNearest
{
public:
KNearestKDTreeImpl(const Params& p)
{
params = p;
}
virtual ~KNearestKDTreeImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getDefaultModelName() const { return "opencv_ml_knn_kd"; }
void clear()
{
samples.release();
responses.release();
}
int getVarCount() const { return samples.cols; }
bool train( const Ptr<TrainData>& data, int flags )
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
if( !update )
{
clear();
}
else
{
CV_Assert( new_samples.cols == samples.cols &&
new_responses.cols == responses.cols );
}
samples.push_back(new_samples);
responses.push_back(new_responses);
tr.build(samples);
return true;
}
float findNearest( InputArray _samples, int k,
OutputArray _results,
OutputArray _neighborResponses,
OutputArray _dists ) const
{
float result = 0.f;
CV_Assert( 0 < k );
Mat test_samples = _samples.getMat();
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols );
int testcount = test_samples.rows;
if( testcount == 0 )
{
_results.release();
_neighborResponses.release();
_dists.release();
return 0.f;
}
Mat res, nr, d;
if( _results.needed() )
{
_results.create(testcount, 1, CV_32F);
res = _results.getMat();
}
if( _neighborResponses.needed() )
{
_neighborResponses.create(testcount, k, CV_32F);
nr = _neighborResponses.getMat();
}
if( _dists.needed() )
{
_dists.create(testcount, k, CV_32F);
d = _dists.getMat();
}
for (int i=0; i<test_samples.rows; ++i)
{
Mat _res, _nr, _d;
if (res.rows>i)
{
_res = res.row(i);
}
if (nr.rows>i)
{
_nr = nr.row(i);
}
if (d.rows>i)
{
_d = d.row(i);
}
tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray());
}
return result; // currently always 0
}
float predict(InputArray inputs, OutputArray outputs, int) const
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
KDTree tr;
Mat samples;
Mat responses;
Params params;
};
Ptr<KNearest> KNearest::create(const Params& p, int type)
2010-11-03 01:58:22 +08:00
{
if (KDTREE==type)
{
return makePtr<KNearestKDTreeImpl>(p);
}
return makePtr<KNearestImpl>(p);
}
}
2010-11-03 01:58:22 +08:00
}
/* End of file */