opencv/modules/objdetect/src/cascadedetect.cpp

1246 lines
39 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <cstdio>
#include "cascadedetect.hpp"
namespace cv
{
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
class CV_EXPORTS SimilarRects
{
public:
SimilarRects(double _eps) : eps(_eps) {}
inline bool operator()(const Rect& r1, const Rect& r2) const
{
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
return std::abs(r1.x - r2.x) <= delta &&
std::abs(r1.y - r2.y) <= delta &&
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
}
double eps;
};
2011-04-26 23:38:32 +08:00
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
{
if( groupThreshold <= 0 || rectList.empty() )
{
if( weights )
{
size_t i, sz = rectList.size();
weights->resize(sz);
for( i = 0; i < sz; i++ )
(*weights)[i] = 1;
}
return;
}
vector<int> labels;
int nclasses = partition(rectList, labels, SimilarRects(eps));
vector<Rect> rrects(nclasses);
vector<int> rweights(nclasses, 0);
vector<int> rejectLevels(nclasses, 0);
vector<double> rejectWeights(nclasses, DBL_MIN);
int i, j, nlabels = (int)labels.size();
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
rrects[cls].x += rectList[i].x;
rrects[cls].y += rectList[i].y;
rrects[cls].width += rectList[i].width;
rrects[cls].height += rectList[i].height;
rweights[cls]++;
}
if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
{
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
if( (*weights)[i] > rejectLevels[cls] )
{
rejectLevels[cls] = (*weights)[i];
rejectWeights[cls] = (*levelWeights)[i];
}
else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
rejectWeights[cls] = (*levelWeights)[i];
}
}
for( i = 0; i < nclasses; i++ )
{
Rect r = rrects[i];
float s = 1.f/rweights[i];
rrects[i] = Rect(saturate_cast<int>(r.x*s),
saturate_cast<int>(r.y*s),
saturate_cast<int>(r.width*s),
saturate_cast<int>(r.height*s));
}
rectList.clear();
if( weights )
weights->clear();
if( levelWeights )
levelWeights->clear();
for( i = 0; i < nclasses; i++ )
{
Rect r1 = rrects[i];
int n1 = levelWeights ? rejectLevels[i] : rweights[i];
double w1 = rejectWeights[i];
if( n1 <= groupThreshold )
continue;
// filter out small face rectangles inside large rectangles
for( j = 0; j < nclasses; j++ )
{
int n2 = rweights[j];
if( j == i || n2 <= groupThreshold )
continue;
Rect r2 = rrects[j];
int dx = saturate_cast<int>( r2.width * eps );
int dy = saturate_cast<int>( r2.height * eps );
if( i != j &&
r1.x >= r2.x - dx &&
r1.y >= r2.y - dy &&
r1.x + r1.width <= r2.x + r2.width + dx &&
r1.y + r1.height <= r2.y + r2.height + dy &&
(n2 > std::max(3, n1) || n1 < 3) )
break;
}
if( j == nclasses )
{
rectList.push_back(r1);
if( weights )
weights->push_back(n1);
if( levelWeights )
levelWeights->push_back(w1);
}
}
}
class MeanshiftGrouping
{
public:
MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,
const vector<double>& wV, double modeEps = 1e-4, int maxIter = 20)
{
densityKernel = densKer;
weightsV = wV;
positionsV = posV;
positionsCount = (int)posV.size();
meanshiftV.resize(positionsCount);
distanceV.resize(positionsCount);
modeEps = modeEps;
iterMax = maxIter;
for (unsigned i = 0; i<positionsV.size(); i++)
{
meanshiftV[i] = getNewValue(positionsV[i]);
distanceV[i] = moveToMode(meanshiftV[i]);
meanshiftV[i] -= positionsV[i];
}
}
void getModes(vector<Point3d>& modesV, vector<double>& resWeightsV, const double eps)
{
for (size_t i=0; i <distanceV.size(); i++)
{
bool is_found = false;
for(size_t j=0; j<modesV.size(); j++)
{
if ( getDistance(distanceV[i], modesV[j]) < eps)
{
is_found=true;
break;
}
}
if (!is_found)
{
modesV.push_back(distanceV[i]);
}
}
resWeightsV.resize(modesV.size());
for (size_t i=0; i<modesV.size(); i++)
{
resWeightsV[i] = getResultWeight(modesV[i]);
}
}
protected:
vector<Point3d> positionsV;
vector<double> weightsV;
Point3d densityKernel;
int positionsCount;
vector<Point3d> meanshiftV;
vector<Point3d> distanceV;
int iterMax;
double modeEps;
Point3d getNewValue(const Point3d& inPt) const
{
Point3d resPoint(.0);
Point3d ratPoint(.0);
for (size_t i=0; i<positionsV.size(); i++)
{
Point3d aPt= positionsV[i];
Point3d bPt = inPt;
Point3d sPt = densityKernel;
sPt.x *= exp(aPt.z);
sPt.y *= exp(aPt.z);
aPt.x /= sPt.x;
aPt.y /= sPt.y;
aPt.z /= sPt.z;
bPt.x /= sPt.x;
bPt.y /= sPt.y;
bPt.z /= sPt.z;
double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
resPoint += w*aPt;
ratPoint.x += w/sPt.x;
ratPoint.y += w/sPt.y;
ratPoint.z += w/sPt.z;
}
resPoint.x /= ratPoint.x;
resPoint.y /= ratPoint.y;
resPoint.z /= ratPoint.z;
return resPoint;
}
double getResultWeight(const Point3d& inPt) const
{
double sumW=0;
for (size_t i=0; i<positionsV.size(); i++)
{
Point3d aPt = positionsV[i];
Point3d sPt = densityKernel;
sPt.x *= exp(aPt.z);
sPt.y *= exp(aPt.z);
aPt -= inPt;
aPt.x /= sPt.x;
aPt.y /= sPt.y;
aPt.z /= sPt.z;
sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
}
return sumW;
}
Point3d moveToMode(Point3d aPt) const
{
Point3d bPt;
for (int i = 0; i<iterMax; i++)
{
bPt = aPt;
aPt = getNewValue(bPt);
if ( getDistance(aPt, bPt) <= modeEps )
{
break;
}
}
return aPt;
}
double getDistance(Point3d p1, Point3d p2) const
{
Point3d ns = densityKernel;
ns.x *= exp(p2.z);
ns.y *= exp(p2.z);
p2 -= p1;
p2.x /= ns.x;
p2.y /= ns.y;
p2.z /= ns.z;
return p2.dot(p2);
}
};
//new grouping function with using meanshift
static void groupRectangles_meanshift(vector<Rect>& rectList, double detectThreshold, vector<double>* foundWeights,
vector<double>& scales, Size winDetSize)
{
int detectionCount = (int)rectList.size();
vector<Point3d> hits(detectionCount), resultHits;
vector<double> hitWeights(detectionCount), resultWeights;
Point2d hitCenter;
for (int i=0; i < detectionCount; i++)
{
hitWeights[i] = (*foundWeights)[i];
hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles
hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i]));
}
rectList.clear();
if (foundWeights)
foundWeights->clear();
double logZ = std::log(1.3);
Point3d smothing(8, 16, logZ);
MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100);
msGrouping.getModes(resultHits, resultWeights, 1);
for (unsigned i=0; i < resultHits.size(); ++i)
{
double scale = exp(resultHits[i].z);
hitCenter.x = resultHits[i].x;
hitCenter.y = resultHits[i].y;
Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) );
Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2),
int(s.width), int(s.height) );
if (resultWeights[i] > detectThreshold)
{
rectList.push_back(resultRect);
foundWeights->push_back(resultWeights[i]);
}
}
}
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, 0, 0);
}
void groupRectangles(vector<Rect>& rectList, vector<int>& weights, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, &weights, 0);
}
//used for cascade detection algorithm for ROC-curve calculating
void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels, vector<double>& levelWeights, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights);
}
//can be used for HOG detection algorithm only
void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights,
vector<double>& foundScales, double detectThreshold, Size winDetSize)
{
groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize);
}
FeatureEvaluator::~FeatureEvaluator() {}
bool FeatureEvaluator::read(const FileNode&) {return true;}
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
int FeatureEvaluator::getFeatureType() const {return -1;}
bool FeatureEvaluator::setImage(const Mat&, Size) {return true;}
bool FeatureEvaluator::setWindow(Point) { return true; }
double FeatureEvaluator::calcOrd(int) const { return 0.; }
int FeatureEvaluator::calcCat(int) const { return 0; }
//---------------------------------------------- HaarEvaluator ---------------------------------------
bool HaarEvaluator::Feature :: read( const FileNode& node )
{
FileNode rnode = node[CC_RECTS];
FileNodeIterator it = rnode.begin(), it_end = rnode.end();
int ri;
for( ri = 0; ri < RECT_NUM; ri++ )
{
rect[ri].r = Rect();
rect[ri].weight = 0.f;
}
for(ri = 0; it != it_end; ++it, ri++)
{
FileNodeIterator it2 = (*it).begin();
it2 >> rect[ri].r.x >> rect[ri].r.y >>
rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight;
}
tilted = (int)node[CC_TILTED] != 0;
return true;
}
HaarEvaluator::HaarEvaluator()
{
features = new vector<Feature>();
}
HaarEvaluator::~HaarEvaluator()
{
}
bool HaarEvaluator::read(const FileNode& node)
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
hasTiltedFeatures = false;
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
if( featuresPtr[i].tilted )
hasTiltedFeatures = true;
}
return true;
}
Ptr<FeatureEvaluator> HaarEvaluator::clone() const
{
HaarEvaluator* ret = new HaarEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->hasTiltedFeatures = hasTiltedFeatures;
ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
ret->normrect = normrect;
memcpy( ret->p, p, 4*sizeof(p[0]) );
memcpy( ret->pq, pq, 4*sizeof(pq[0]) );
ret->offset = offset;
ret->varianceNormFactor = varianceNormFactor;
return ret;
}
bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
{
int rn = image.rows+1, cn = image.cols+1;
origWinSize = _origWinSize;
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
if (image.cols < origWinSize.width || image.rows < origWinSize.height)
return false;
if( sum0.rows < rn || sum0.cols < cn )
{
sum0.create(rn, cn, CV_32S);
sqsum0.create(rn, cn, CV_64F);
if (hasTiltedFeatures)
tilted0.create( rn, cn, CV_32S);
}
sum = Mat(rn, cn, CV_32S, sum0.data);
2011-04-29 19:55:33 +08:00
sqsum = Mat(rn, cn, CV_64F, sqsum0.data);
if( hasTiltedFeatures )
{
tilted = Mat(rn, cn, CV_32S, tilted0.data);
integral(image, sum, sqsum, tilted);
}
else
integral(image, sum, sqsum);
const int* sdata = (const int*)sum.data;
const double* sqdata = (const double*)sqsum.data;
size_t sumStep = sum.step/sizeof(sdata[0]);
size_t sqsumStep = sqsum.step/sizeof(sqdata[0]);
CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
size_t fi, nfeatures = features->size();
for( fi = 0; fi < nfeatures; fi++ )
featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
return true;
}
bool HaarEvaluator::setWindow( Point pt )
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= sum.cols ||
pt.y + origWinSize.height >= sum.rows )
return false;
size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x;
size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x;
int valsum = CALC_SUM(p, pOffset);
double valsqsum = CALC_SUM(pq, pqOffset);
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
if( nf > 0. )
nf = sqrt(nf);
else
nf = 1.;
varianceNormFactor = 1./nf;
offset = (int)pOffset;
return true;
}
//---------------------------------------------- LBPEvaluator -------------------------------------
bool LBPEvaluator::Feature :: read(const FileNode& node )
{
FileNode rnode = node[CC_RECT];
FileNodeIterator it = rnode.begin();
it >> rect.x >> rect.y >> rect.width >> rect.height;
return true;
}
LBPEvaluator::LBPEvaluator()
{
features = new vector<Feature>();
}
LBPEvaluator::~LBPEvaluator()
{
}
bool LBPEvaluator::read( const FileNode& node )
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
}
return true;
}
Ptr<FeatureEvaluator> LBPEvaluator::clone() const
{
LBPEvaluator* ret = new LBPEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->sum0 = sum0, ret->sum = sum;
ret->normrect = normrect;
ret->offset = offset;
return ret;
}
bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize )
{
int rn = image.rows+1, cn = image.cols+1;
origWinSize = _origWinSize;
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
return false;
if( sum0.rows < rn || sum0.cols < cn )
sum0.create(rn, cn, CV_32S);
sum = Mat(rn, cn, CV_32S, sum0.data);
integral(image, sum);
size_t fi, nfeatures = features->size();
for( fi = 0; fi < nfeatures; fi++ )
featuresPtr[fi].updatePtrs( sum );
return true;
}
bool LBPEvaluator::setWindow( Point pt )
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= sum.cols ||
pt.y + origWinSize.height >= sum.rows )
return false;
offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x;
return true;
}
//---------------------------------------------- HOGEvaluator ---------------------------------------
bool HOGEvaluator::Feature :: read( const FileNode& node )
{
FileNode rnode = node[CC_RECT];
FileNodeIterator it = rnode.begin();
it >> rect[0].x >> rect[0].y >> rect[0].width >> rect[0].height >> featComponent;
rect[1].x = rect[0].x + rect[0].width;
rect[1].y = rect[0].y;
rect[2].x = rect[0].x;
rect[2].y = rect[0].y + rect[0].height;
rect[3].x = rect[0].x + rect[0].width;
rect[3].y = rect[0].y + rect[0].height;
rect[1].width = rect[2].width = rect[3].width = rect[0].width;
rect[1].height = rect[2].height = rect[3].height = rect[0].height;
return true;
}
HOGEvaluator::HOGEvaluator()
{
features = new vector<Feature>();
}
HOGEvaluator::~HOGEvaluator()
{
}
bool HOGEvaluator::read( const FileNode& node )
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
}
return true;
}
Ptr<FeatureEvaluator> HOGEvaluator::clone() const
{
HOGEvaluator* ret = new HOGEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->offset = offset;
ret->hist = hist;
ret->normSum = normSum;
return ret;
}
bool HOGEvaluator::setImage( const Mat& image, Size winSize )
{
int rows = image.rows + 1;
int cols = image.cols + 1;
origWinSize = winSize;
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
return false;
hist.clear();
for( int bin = 0; bin < Feature::BIN_NUM; bin++ )
{
hist.push_back( Mat(rows, cols, CV_32FC1) );
}
normSum.create( rows, cols, CV_32FC1 );
integralHistogram( image, hist, normSum, Feature::BIN_NUM );
size_t featIdx, featCount = features->size();
for( featIdx = 0; featIdx < featCount; featIdx++ )
{
featuresPtr[featIdx].updatePtrs( hist, normSum );
}
return true;
}
bool HOGEvaluator::setWindow(Point pt)
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= hist[0].cols-2 ||
pt.y + origWinSize.height >= hist[0].rows-2 )
return false;
offset = pt.y * ((int)hist[0].step/sizeof(float)) + pt.x;
return true;
}
void HOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const
{
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
int x, y, binIdx;
Size gradSize(img.size());
Size histSize(histogram[0].size());
Mat grad(gradSize, CV_32F);
Mat qangle(gradSize, CV_8U);
AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
int* xmap = (int*)mapbuf + 1;
int* ymap = xmap + gradSize.width + 2;
const int borderType = (int)BORDER_REPLICATE;
for( x = -1; x < gradSize.width + 1; x++ )
xmap[x] = borderInterpolate(x, gradSize.width, borderType);
for( y = -1; y < gradSize.height + 1; y++ )
ymap[y] = borderInterpolate(y, gradSize.height, borderType);
int width = gradSize.width;
AutoBuffer<float> _dbuf(width*4);
float* dbuf = _dbuf;
Mat Dx(1, width, CV_32F, dbuf);
Mat Dy(1, width, CV_32F, dbuf + width);
Mat Mag(1, width, CV_32F, dbuf + width*2);
Mat Angle(1, width, CV_32F, dbuf + width*3);
float angleScale = (float)(nbins/CV_PI);
for( y = 0; y < gradSize.height; y++ )
{
const uchar* currPtr = img.data + img.step*ymap[y];
const uchar* prevPtr = img.data + img.step*ymap[y-1];
const uchar* nextPtr = img.data + img.step*ymap[y+1];
float* gradPtr = (float*)grad.ptr(y);
uchar* qanglePtr = (uchar*)qangle.ptr(y);
for( x = 0; x < width; x++ )
{
dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
}
cartToPolar( Dx, Dy, Mag, Angle, false );
for( x = 0; x < width; x++ )
{
float mag = dbuf[x+width*2];
float angle = dbuf[x+width*3];
angle = angle*angleScale - 0.5f;
int bidx = cvFloor(angle);
angle -= bidx;
if( bidx < 0 )
bidx += nbins;
else if( bidx >= nbins )
bidx -= nbins;
qanglePtr[x] = (uchar)bidx;
gradPtr[x] = mag;
}
}
integral(grad, norm, grad.depth());
float* histBuf;
const float* magBuf;
const uchar* binsBuf;
int binsStep = (int)( qangle.step / sizeof(uchar) );
int histStep = (int)( histogram[0].step / sizeof(float) );
int magStep = (int)( grad.step / sizeof(float) );
for( binIdx = 0; binIdx < nbins; binIdx++ )
{
histBuf = (float*)histogram[binIdx].data;
magBuf = (const float*)grad.data;
binsBuf = (const uchar*)qangle.data;
memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
histBuf += histStep + 1;
for( y = 0; y < qangle.rows; y++ )
{
histBuf[-1] = 0.f;
float strSum = 0.f;
for( x = 0; x < qangle.cols; x++ )
{
if( binsBuf[x] == binIdx )
strSum += magBuf[x];
histBuf[x] = histBuf[-histStep + x] + strSum;
}
histBuf += histStep;
binsBuf += binsStep;
magBuf += magStep;
}
}
}
Ptr<FeatureEvaluator> FeatureEvaluator::create( int featureType )
{
return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) :
featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) :
featureType == HOG ? Ptr<FeatureEvaluator>(new HOGEvaluator) :
Ptr<FeatureEvaluator>();
}
//---------------------------------------- Classifier Cascade --------------------------------------------
CascadeClassifier::CascadeClassifier()
{
}
CascadeClassifier::CascadeClassifier(const string& filename)
{
load(filename);
}
CascadeClassifier::~CascadeClassifier()
{
}
bool CascadeClassifier::empty() const
{
return oldCascade.empty() && data.stages.empty();
}
bool CascadeClassifier::load(const string& filename)
{
oldCascade.release();
data = Data();
featureEvaluator.release();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
if( read(fs.getFirstTopLevelNode()) )
return true;
fs.release();
oldCascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
return !oldCascade.empty();
}
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& featureEvaluator, Point pt, double& weight )
{
CV_Assert( oldCascade.empty() );
assert( data.featureType == FeatureEvaluator::HAAR ||
data.featureType == FeatureEvaluator::LBP ||
data.featureType == FeatureEvaluator::HOG );
2010-12-09 23:09:34 +08:00
if( !featureEvaluator->setWindow(pt) )
return -1;
if( data.isStumpBased )
{
if( data.featureType == FeatureEvaluator::HAAR )
return predictOrderedStump<HaarEvaluator>( *this, featureEvaluator, weight );
else if( data.featureType == FeatureEvaluator::LBP )
return predictCategoricalStump<LBPEvaluator>( *this, featureEvaluator, weight );
else if( data.featureType == FeatureEvaluator::HOG )
return predictOrderedStump<HOGEvaluator>( *this, featureEvaluator, weight );
else
return -2;
}
else
{
if( data.featureType == FeatureEvaluator::HAAR )
return predictOrdered<HaarEvaluator>( *this, featureEvaluator, weight );
else if( data.featureType == FeatureEvaluator::LBP )
return predictCategorical<LBPEvaluator>( *this, featureEvaluator, weight );
else if( data.featureType == FeatureEvaluator::HOG )
return predictOrdered<HOGEvaluator>( *this, featureEvaluator, weight );
else
return -2;
}
}
2010-12-09 23:09:34 +08:00
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& featureEvaluator, const Mat& image )
{
return empty() ? false : featureEvaluator->setImage(image, data.origWinSize);
}
2010-12-09 23:09:34 +08:00
void CascadeClassifier::setMaskGenerator(Ptr<MaskGenerator> _maskGenerator)
{
maskGenerator=_maskGenerator;
}
Ptr<CascadeClassifier::MaskGenerator> CascadeClassifier::getMaskGenerator()
{
return maskGenerator;
}
void CascadeClassifier::setFaceDetectionMaskGenerator()
{
#ifdef HAVE_TEGRA_OPTIMIZATION
setMaskGenerator(tegra::getCascadeClassifierMaskGenerator(*this));
#else
setMaskGenerator(Ptr<CascadeClassifier::MaskGenerator>());
#endif
}
struct CascadeClassifierInvoker
{
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor,
ConcurrentRectVector& _vec, vector<int>& _levels, vector<double>& _weights, bool outputLevels, const Mat& _mask)
{
2010-12-09 23:09:34 +08:00
classifier = &_cc;
processingRectSize = _sz1;
stripSize = _stripSize;
yStep = _yStep;
2010-12-09 23:09:34 +08:00
scalingFactor = _factor;
rectangles = &_vec;
rejectLevels = outputLevels ? &_levels : 0;
levelWeights = outputLevels ? &_weights : 0;
mask=_mask;
}
void operator()(const BlockedRange& range) const
{
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
2010-12-09 23:09:34 +08:00
int y1 = range.begin() * stripSize;
int y2 = min(range.end() * stripSize, processingRectSize.height);
for( int y = y1; y < y2; y += yStep )
2010-12-09 23:09:34 +08:00
{
for( int x = 0; x < processingRectSize.width; x += yStep )
{
if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) {
continue;
}
double gypWeight;
int result = classifier->runAt(evaluator, Point(x, y), gypWeight);
if( rejectLevels )
{
if( result == 1 )
result = -(int)classifier->data.stages.size();
if( classifier->data.stages.size() + result < 4 )
{
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height));
rejectLevels->push_back(-result);
levelWeights->push_back(gypWeight);
}
}
else if( result > 0 )
2010-12-09 23:09:34 +08:00
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
winSize.width, winSize.height));
2010-12-09 23:09:34 +08:00
if( result == 0 )
x += yStep;
}
2010-12-09 23:09:34 +08:00
}
}
2010-12-09 23:09:34 +08:00
CascadeClassifier* classifier;
ConcurrentRectVector* rectangles;
Size processingRectSize;
int stripSize, yStep;
2010-12-09 23:09:34 +08:00
double scalingFactor;
vector<int> *rejectLevels;
vector<double> *levelWeights;
Mat mask;
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates,
vector<int>& levels, vector<double>& weights, bool outputRejectLevels )
{
if( !featureEvaluator->setImage( image, data.origWinSize ) )
return false;
Mat currentMask;
if (!maskGenerator.empty()) {
currentMask=maskGenerator->generateMask(image);
}
ConcurrentRectVector concurrentCandidates;
vector<int> rejectLevels;
vector<double> levelWeights;
if( outputRejectLevels )
{
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
concurrentCandidates, rejectLevels, levelWeights, true, currentMask));
levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
}
else
{
parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
concurrentCandidates, rejectLevels, levelWeights, false, currentMask));
}
candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() );
return true;
}
bool CascadeClassifier::isOldFormatCascade() const
{
return !oldCascade.empty();
}
int CascadeClassifier::getFeatureType() const
{
return featureEvaluator->getFeatureType();
}
Size CascadeClassifier::getOriginalWindowSize() const
{
return data.origWinSize;
}
bool CascadeClassifier::setImage(const Mat& image)
{
2010-12-15 19:21:27 +08:00
return featureEvaluator->setImage(image, data.origWinSize);
}
2011-04-19 20:31:35 +08:00
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
2011-04-19 20:31:35 +08:00
bool outputRejectLevels )
{
const double GROUP_EPS = 0.2;
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
if( empty() )
return;
if( isOldFormatCascade() )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
return;
}
objects.clear();
2010-12-09 23:09:34 +08:00
if (!maskGenerator.empty()) {
maskGenerator->initializeMask(image);
}
2010-12-09 23:09:34 +08:00
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
maxObjectSize = image.size();
2010-12-09 23:09:34 +08:00
Mat grayImage = image;
if( grayImage.channels() > 1 )
{
Mat temp;
2010-12-09 23:09:34 +08:00
cvtColor(grayImage, temp, CV_BGR2GRAY);
grayImage = temp;
}
2010-12-09 23:09:34 +08:00
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
vector<Rect> candidates;
for( double factor = 1; ; factor *= scaleFactor )
{
Size originalWindowSize = getOriginalWindowSize();
2010-12-09 23:09:34 +08:00
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
2010-12-09 23:09:34 +08:00
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
Size processingRectSize( scaledImageSize.width - originalWindowSize.width + 1, scaledImageSize.height - originalWindowSize.height + 1 );
if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
2010-12-09 23:09:34 +08:00
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
2010-12-09 23:09:34 +08:00
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
continue;
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
int yStep;
if( getFeatureType() == cv::FeatureEvaluator::HOG )
{
yStep = 4;
}
else
{
yStep = factor > 2. ? 1 : 2;
}
int stripCount, stripSize;
2010-12-09 23:09:34 +08:00
#if defined(HAVE_TBB) || defined(HAVE_THREADING_FRAMEWORK)
const int PTS_PER_THREAD = 1000;
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = std::min(std::max(stripCount, 1), 100);
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
#else
stripCount = 1;
stripSize = processingRectSize.height;
#endif
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )
break;
}
2010-12-09 23:09:34 +08:00
objects.resize(candidates.size());
std::copy(candidates.begin(), candidates.end(), objects.begin());
if( outputRejectLevels )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
2011-04-19 20:31:35 +08:00
}
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize)
{
vector<int> fakeLevels;
vector<double> fakeWeights;
detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
2011-04-19 20:31:35 +08:00
minNeighbors, flags, minObjectSize, maxObjectSize, false );
}
bool CascadeClassifier::Data::read(const FileNode &root)
{
static const float THRESHOLD_EPS = 1e-5f;
// load stage params
string stageTypeStr = (string)root[CC_STAGE_TYPE];
if( stageTypeStr == CC_BOOST )
stageType = BOOST;
else
return false;
string featureTypeStr = (string)root[CC_FEATURE_TYPE];
if( featureTypeStr == CC_HAAR )
featureType = FeatureEvaluator::HAAR;
else if( featureTypeStr == CC_LBP )
featureType = FeatureEvaluator::LBP;
else if( featureTypeStr == CC_HOG )
featureType = FeatureEvaluator::HOG;
else
return false;
origWinSize.width = (int)root[CC_WIDTH];
origWinSize.height = (int)root[CC_HEIGHT];
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
2010-12-09 23:09:34 +08:00
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
// load feature params
FileNode fn = root[CC_FEATURE_PARAMS];
if( fn.empty() )
return false;
ncategories = fn[CC_MAX_CAT_COUNT];
int subsetSize = (ncategories + 31)/32,
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
// load stages
fn = root[CC_STAGES];
if( fn.empty() )
return false;
stages.reserve(fn.size());
classifiers.clear();
nodes.clear();
FileNodeIterator it = fn.begin(), it_end = fn.end();
for( int si = 0; it != it_end; si++, ++it )
{
FileNode fns = *it;
Stage stage;
stage.threshold = (float)fns[CC_STAGE_THRESHOLD] - THRESHOLD_EPS;
fns = fns[CC_WEAK_CLASSIFIERS];
if(fns.empty())
return false;
stage.ntrees = (int)fns.size();
stage.first = (int)classifiers.size();
stages.push_back(stage);
classifiers.reserve(stages[si].first + stages[si].ntrees);
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
for( ; it1 != it1_end; ++it1 ) // weak trees
{
FileNode fnw = *it1;
FileNode internalNodes = fnw[CC_INTERNAL_NODES];
FileNode leafValues = fnw[CC_LEAF_VALUES];
if( internalNodes.empty() || leafValues.empty() )
return false;
DTree tree;
tree.nodeCount = (int)internalNodes.size()/nodeStep;
classifiers.push_back(tree);
nodes.reserve(nodes.size() + tree.nodeCount);
leaves.reserve(leaves.size() + leafValues.size());
if( subsetSize > 0 )
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();
for( ; internalNodesIter != internalNodesEnd; ) // nodes
{
DTreeNode node;
node.left = (int)*internalNodesIter; ++internalNodesIter;
node.right = (int)*internalNodesIter; ++internalNodesIter;
node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
if( subsetSize > 0 )
{
for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
subsets.push_back((int)*internalNodesIter);
node.threshold = 0.f;
}
else
{
node.threshold = (float)*internalNodesIter; ++internalNodesIter;
}
nodes.push_back(node);
}
internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();
for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
leaves.push_back((float)*internalNodesIter);
}
}
return true;
}
bool CascadeClassifier::read(const FileNode& root)
{
if( !data.read(root) )
return false;
// load features
featureEvaluator = FeatureEvaluator::create(data.featureType);
FileNode fn = root[CC_FEATURES];
if( fn.empty() )
return false;
return featureEvaluator->read(fn);
}
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
{ cvReleaseHaarClassifierCascade(&obj); }
} // namespace cv