opencv/modules/features/misc/java/test/BruteForceL1DescriptorMatcherTest.java

269 lines
8.0 KiB
Java
Raw Normal View History

package org.opencv.test.features;
2012-04-09 16:07:18 +08:00
import java.util.Arrays;
import java.util.List;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
2012-04-09 16:07:18 +08:00
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.DMatch;
import org.opencv.features.DescriptorMatcher;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features.Feature2D;
public class BruteForceL1DescriptorMatcherTest extends OpenCVTestCase {
DescriptorMatcher matcher;
int matSize;
DMatch[] truth;
private Mat getMaskImg() {
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
{
put(0, 0, 1, 1, 1, 1);
}
};
}
private Mat getQueryDescriptors() {
Mat img = getQueryImg();
2012-04-09 16:07:18 +08:00
MatOfKeyPoint keypoints = new MatOfKeyPoint();
Mat descriptors = new Mat();
2016-10-19 02:22:18 +08:00
Feature2D detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
2016-10-18 01:53:59 +08:00
setProperty(detector, "extended", "boolean", true);
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaveLayers", "int", 2);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "upright", "boolean", false);
detector.detect(img, keypoints);
extractor.compute(img, keypoints, descriptors);
return descriptors;
}
private Mat getQueryImg() {
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
return cross;
}
private Mat getTrainDescriptors() {
Mat img = getTrainImg();
2012-04-09 16:07:18 +08:00
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
Mat descriptors = new Mat();
2016-10-19 02:22:18 +08:00
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
extractor.compute(img, keypoints, descriptors);
return descriptors;
}
private Mat getTrainImg() {
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
return cross;
}
protected void setUp() throws Exception {
super.setUp();
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_L1);
matSize = 100;
truth = new DMatch[] {
new DMatch(0, 0, 0, 3.0710702f),
new DMatch(1, 1, 0, 3.562016f),
new DMatch(2, 1, 0, 1.3682679f),
new DMatch(3, 1, 0, 1.3012862f),
new DMatch(4, 1, 0, 1.1852086f)
2012-04-10 23:01:10 +08:00
};
}
public void testAdd() {
matcher.add(Arrays.asList(new Mat()));
assertFalse(matcher.empty());
}
public void testClear() {
matcher.add(Arrays.asList(new Mat()));
matcher.clear();
assertTrue(matcher.empty());
}
public void testClone() {
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
Mat truth = train.clone();
matcher.add(Arrays.asList(train));
DescriptorMatcher cloned = matcher.clone();
assertNotNull(cloned);
List<Mat> descriptors = cloned.getTrainDescriptors();
assertEquals(1, descriptors.size());
assertMatEqual(truth, descriptors.get(0));
}
public void testCloneBoolean() {
matcher.add(Arrays.asList(new Mat()));
DescriptorMatcher cloned = matcher.clone(true);
assertNotNull(cloned);
assertTrue(cloned.empty());
}
public void testCreate() {
assertNotNull(matcher);
}
public void testEmpty() {
assertTrue(matcher.empty());
}
public void testGetTrainDescriptors() {
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
Mat truth = train.clone();
matcher.add(Arrays.asList(train));
List<Mat> descriptors = matcher.getTrainDescriptors();
assertEquals(1, descriptors.size());
assertMatEqual(truth, descriptors.get(0));
}
public void testIsMaskSupported() {
assertTrue(matcher.isMaskSupported());
}
public void testKnnMatchMatListOfListOfDMatchInt() {
fail("Not yet implemented");
}
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
fail("Not yet implemented");
}
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchInt() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
fail("Not yet implemented");
}
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
fail("Not yet implemented");
}
public void testMatchMatListOfDMatch() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
2012-04-09 16:07:18 +08:00
MatOfDMatch matches = new MatOfDMatch();
matcher.add(Arrays.asList(train));
matcher.match(query, matches);
2012-10-30 00:34:36 +08:00
2012-04-09 16:07:18 +08:00
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
}
public void testMatchMatListOfDMatchListOfMat() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
Mat mask = getMaskImg();
2012-04-09 16:07:18 +08:00
MatOfDMatch matches = new MatOfDMatch();
matcher.add(Arrays.asList(train));
matcher.match(query, matches, Arrays.asList(mask));
2012-04-09 16:07:18 +08:00
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
}
public void testMatchMatMatListOfDMatch() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
2012-04-09 16:07:18 +08:00
MatOfDMatch matches = new MatOfDMatch();
matcher.match(query, train, matches);
2012-04-09 16:07:18 +08:00
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
}
public void testMatchMatMatListOfDMatchMat() {
Mat train = getTrainDescriptors();
Mat query = getQueryDescriptors();
Mat mask = getMaskImg();
2012-04-09 16:07:18 +08:00
MatOfDMatch matches = new MatOfDMatch();
matcher.match(query, train, matches, mask);
2012-04-09 16:07:18 +08:00
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
}
public void testRadiusMatchMatListOfListOfDMatchFloat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
fail("Not yet implemented");
}
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
fail("Not yet implemented");
}
public void testRead() {
String filename = OpenCVTestRunner.getTempFileName("yml");
2016-10-19 02:22:18 +08:00
writeFile(filename, "%YAML:1.0\n---\n");
matcher.read(filename);
assertTrue(true);// BruteforceMatcher has no settings
}
public void testTrain() {
matcher.train();// BruteforceMatcher does not need to train
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("yml");
matcher.write(filename);
2016-10-19 02:22:18 +08:00
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}