mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
imgproc: fix bit-exact GaussianBlur() / sepFilter2D() (#15855)
* imgproc: fix bit-exact GaussianBlur() / sepFilter2D() - avoid kernels with bad approximation - GaussiabBlur - apply error-diffusion approximation for kernel (8-bit fraction) * java(test): update features2d ref data * test: update test_facedetect
This commit is contained in:
parent
955b20230c
commit
f4d55d512f
@ -85,11 +85,11 @@ public class BruteForceDescriptorMatcherTest extends OpenCVTestCase {
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.6211397f),
|
||||
new DMatch(0, 0, 0, 0.6159003f),
|
||||
new DMatch(1, 1, 0, 0.9177120f),
|
||||
new DMatch(2, 1, 0, 0.3112163f),
|
||||
new DMatch(3, 1, 0, 0.2925074f),
|
||||
new DMatch(4, 1, 0, 0.9309178f)
|
||||
new DMatch(4, 1, 0, 0.26520672f)
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -85,11 +85,11 @@ public class BruteForceL1DescriptorMatcherTest extends OpenCVTestCase {
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 3.0975165f),
|
||||
new DMatch(1, 1, 0, 3.5680308f),
|
||||
new DMatch(2, 1, 0, 1.3722466f),
|
||||
new DMatch(3, 1, 0, 1.3041023f),
|
||||
new DMatch(4, 1, 0, 3.5970376f)
|
||||
new DMatch(0, 0, 0, 3.0710702f),
|
||||
new DMatch(1, 1, 0, 3.562016f),
|
||||
new DMatch(2, 1, 0, 1.3682679f),
|
||||
new DMatch(3, 1, 0, 1.3012862f),
|
||||
new DMatch(4, 1, 0, 1.1852086f)
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -90,11 +90,11 @@ public class BruteForceSL2DescriptorMatcherTest extends OpenCVTestCase {
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.3858146f),
|
||||
new DMatch(0, 0, 0, 0.37933317f),
|
||||
new DMatch(1, 1, 0, 0.8421953f),
|
||||
new DMatch(2, 1, 0, 0.0968556f),
|
||||
new DMatch(3, 1, 0, 0.0855606f),
|
||||
new DMatch(4, 1, 0, 0.8666080f)
|
||||
new DMatch(4, 1, 0, 0.07033461f)
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -160,11 +160,11 @@ public class FlannBasedDescriptorMatcherTest extends OpenCVTestCase {
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
|
||||
matSize = 100;
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.6211397f),
|
||||
new DMatch(0, 0, 0, 0.6159003f),
|
||||
new DMatch(1, 1, 0, 0.9177120f),
|
||||
new DMatch(2, 1, 0, 0.3112163f),
|
||||
new DMatch(3, 1, 0, 0.2925075f),
|
||||
new DMatch(4, 1, 0, 0.9309179f)
|
||||
new DMatch(4, 1, 0, 0.26520672f)
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -53,7 +53,7 @@ public class ORBDescriptorExtractorTest extends OpenCVTestCase {
|
||||
Mat truth = new Mat(1, 32, CvType.CV_8UC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
6, 74, 6, 129, 2, 130, 56, 0, 36, 132, 66, 165, 172, 6, 3, 72, 102, 61, 163, 214, 0, 144, 65, 232, 4, 32, 138, 129, 4, 21, 37, 88);
|
||||
6, 74, 6, 129, 2, 130, 56, 0, 44, 132, 66, 165, 172, 6, 3, 72, 102, 61, 171, 214, 0, 144, 65, 232, 4, 32, 138, 131, 4, 21, 37, 217);
|
||||
}
|
||||
};
|
||||
assertDescriptorsClose(truth, descriptors, 1);
|
||||
@ -92,7 +92,7 @@ public class ORBDescriptorExtractorTest extends OpenCVTestCase {
|
||||
Mat truth = new Mat(1, 32, CvType.CV_8UC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
6, 10, 22, 5, 2, 130, 56, 0, 44, 164, 66, 165, 140, 6, 1, 72, 38, 61, 163, 210, 0, 208, 1, 104, 4, 32, 10, 131, 0, 37, 37, 67);
|
||||
6, 10, 22, 5, 2, 130, 56, 0, 44, 164, 66, 165, 140, 6, 1, 72, 38, 61, 163, 210, 0, 208, 1, 104, 4, 32, 74, 131, 0, 37, 37, 67);
|
||||
}
|
||||
};
|
||||
assertDescriptorsClose(truth, descriptors, 1);
|
||||
|
@ -41,6 +41,12 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include <opencv2/core/utils/logger.defines.hpp>
|
||||
#undef CV_LOG_STRIP_LEVEL
|
||||
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG + 1
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
#include "opencv2/core/opencl/ocl_defs.hpp"
|
||||
#include "opencl_kernels_imgproc.hpp"
|
||||
#include "hal_replacement.hpp"
|
||||
@ -273,6 +279,22 @@ Ptr<BaseColumnFilter> getLinearColumnFilter(
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
|
||||
static bool createBitExactKernel_32S(const Mat& kernel, Mat& kernel_dst, int bits)
|
||||
{
|
||||
kernel.convertTo(kernel_dst, CV_32S, (1 << bits));
|
||||
Mat_<double> kernel_64f;
|
||||
kernel.convertTo(kernel_64f, CV_64F, (1 << bits));
|
||||
int ksize = (int)kernel.total();
|
||||
const double eps = 10 * FLT_EPSILON * (1 << bits);
|
||||
for (int i = 0; i < ksize; i++)
|
||||
{
|
||||
int bitExactValue = kernel_dst.at<int>(i);
|
||||
double approxValue = kernel_64f.at<double>(i);
|
||||
if (fabs(approxValue - bitExactValue) > eps)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Ptr<FilterEngine> createSeparableLinearFilter(
|
||||
int _srcType, int _dstType,
|
||||
@ -299,6 +321,7 @@ Ptr<FilterEngine> createSeparableLinearFilter(
|
||||
_columnKernel.rows == 1 ? Point(_anchor.y, 0) : Point(0, _anchor.y));
|
||||
Mat rowKernel, columnKernel;
|
||||
|
||||
bool isBitExactMode = false;
|
||||
int bdepth = std::max(CV_32F,std::max(sdepth, ddepth));
|
||||
int bits = 0;
|
||||
|
||||
@ -311,14 +334,27 @@ Ptr<FilterEngine> createSeparableLinearFilter(
|
||||
(rtype & ctype & KERNEL_INTEGER) &&
|
||||
ddepth == CV_16S)) )
|
||||
{
|
||||
bdepth = CV_32S;
|
||||
bits = ddepth == CV_8U ? 8 : 0;
|
||||
_rowKernel.convertTo( rowKernel, CV_32S, 1 << bits );
|
||||
_columnKernel.convertTo( columnKernel, CV_32S, 1 << bits );
|
||||
bits *= 2;
|
||||
_delta *= (1 << bits);
|
||||
int bits_ = ddepth == CV_8U ? 8 : 0;
|
||||
bool isValidBitExactRowKernel = createBitExactKernel_32S(_rowKernel, rowKernel, bits_);
|
||||
bool isValidBitExactColumnKernel = createBitExactKernel_32S(_columnKernel, columnKernel, bits_);
|
||||
if (!isValidBitExactRowKernel)
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "createSeparableLinearFilter: bit-exact row-kernel can't be applied: ksize=" << _rowKernel.total());
|
||||
}
|
||||
else if (!isValidBitExactColumnKernel)
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "createSeparableLinearFilter: bit-exact column-kernel can't be applied: ksize=" << _columnKernel.total());
|
||||
}
|
||||
else
|
||||
{
|
||||
bdepth = CV_32S;
|
||||
bits = bits_;
|
||||
bits *= 2;
|
||||
_delta *= (1 << bits);
|
||||
isBitExactMode = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
if (!isBitExactMode)
|
||||
{
|
||||
if( _rowKernel.type() != bdepth )
|
||||
_rowKernel.convertTo( rowKernel, bdepth );
|
||||
|
@ -355,6 +355,9 @@ public:
|
||||
CV_ALWAYS_INLINE bool isZero() { return val == 0; }
|
||||
static CV_ALWAYS_INLINE ufixedpoint16 zero() { return ufixedpoint16(); }
|
||||
static CV_ALWAYS_INLINE ufixedpoint16 one() { return ufixedpoint16((uint16_t)(1 << fixedShift)); }
|
||||
|
||||
static CV_ALWAYS_INLINE ufixedpoint16 fromRaw(uint16_t v) { return ufixedpoint16(v); }
|
||||
CV_ALWAYS_INLINE ufixedpoint16 raw() { return val; }
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -43,6 +43,10 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
#include <opencv2/core/utils/configuration.private.hpp>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
@ -67,109 +71,212 @@ namespace cv {
|
||||
Gaussian Blur
|
||||
\****************************************************************************************/
|
||||
|
||||
Mat getGaussianKernel(int n, double sigma, int ktype)
|
||||
/**
|
||||
* Bit-exact in terms of softfloat computations
|
||||
*
|
||||
* returns sum of kernel values. Should be equal to 1.0
|
||||
*/
|
||||
static
|
||||
softdouble getGaussianKernelBitExact(std::vector<softdouble>& result, int n, double sigma)
|
||||
{
|
||||
CV_Assert(n > 0);
|
||||
const int SMALL_GAUSSIAN_SIZE = 7;
|
||||
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
|
||||
//TODO: incorrect SURF implementation requests kernel with n = 20 (PATCH_SZ): https://github.com/opencv/opencv/issues/15856
|
||||
//CV_Assert((n & 1) == 1); // odd
|
||||
|
||||
if (sigma <= 0)
|
||||
{
|
||||
{1.f},
|
||||
{0.25f, 0.5f, 0.25f},
|
||||
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
|
||||
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
|
||||
};
|
||||
|
||||
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
|
||||
small_gaussian_tab[n>>1] : 0;
|
||||
|
||||
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
||||
Mat kernel(n, 1, ktype);
|
||||
float* cf = kernel.ptr<float>();
|
||||
double* cd = kernel.ptr<double>();
|
||||
|
||||
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
|
||||
double scale2X = -0.5/(sigmaX*sigmaX);
|
||||
double sum = 0;
|
||||
|
||||
int i;
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
double x = i - (n-1)*0.5;
|
||||
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
|
||||
if( ktype == CV_32F )
|
||||
if (n == 1)
|
||||
{
|
||||
cf[i] = (float)t;
|
||||
sum += cf[i];
|
||||
result = std::vector<softdouble>(1, softdouble::one());
|
||||
return softdouble::one();
|
||||
}
|
||||
else
|
||||
else if (n == 3)
|
||||
{
|
||||
cd[i] = t;
|
||||
sum += cd[i];
|
||||
softdouble v3[] = {
|
||||
softdouble::fromRaw(0x3fd0000000000000), // 0.25
|
||||
softdouble::fromRaw(0x3fe0000000000000), // 0.5
|
||||
softdouble::fromRaw(0x3fd0000000000000) // 0.25
|
||||
};
|
||||
result.assign(v3, v3 + 3);
|
||||
return softdouble::one();
|
||||
}
|
||||
else if (n == 5)
|
||||
{
|
||||
softdouble v5[] = {
|
||||
softdouble::fromRaw(0x3fb0000000000000), // 0.0625
|
||||
softdouble::fromRaw(0x3fd0000000000000), // 0.25
|
||||
softdouble::fromRaw(0x3fd8000000000000), // 0.375
|
||||
softdouble::fromRaw(0x3fd0000000000000), // 0.25
|
||||
softdouble::fromRaw(0x3fb0000000000000) // 0.0625
|
||||
};
|
||||
result.assign(v5, v5 + 5);
|
||||
return softdouble::one();
|
||||
}
|
||||
else if (n == 7)
|
||||
{
|
||||
softdouble v7[] = {
|
||||
softdouble::fromRaw(0x3fa0000000000000), // 0.03125
|
||||
softdouble::fromRaw(0x3fbc000000000000), // 0.109375
|
||||
softdouble::fromRaw(0x3fcc000000000000), // 0.21875
|
||||
softdouble::fromRaw(0x3fd2000000000000), // 0.28125
|
||||
softdouble::fromRaw(0x3fcc000000000000), // 0.21875
|
||||
softdouble::fromRaw(0x3fbc000000000000), // 0.109375
|
||||
softdouble::fromRaw(0x3fa0000000000000) // 0.03125
|
||||
};
|
||||
result.assign(v7, v7 + 7);
|
||||
return softdouble::one();
|
||||
}
|
||||
else if (n == 9)
|
||||
{
|
||||
softdouble v9[] = {
|
||||
softdouble::fromRaw(0x3f90000000000000), // 4 / 256
|
||||
softdouble::fromRaw(0x3faa000000000000), // 13 / 256
|
||||
softdouble::fromRaw(0x3fbe000000000000), // 30 / 256
|
||||
softdouble::fromRaw(0x3fc9800000000000), // 51 / 256
|
||||
softdouble::fromRaw(0x3fce000000000000), // 60 / 256
|
||||
softdouble::fromRaw(0x3fc9800000000000), // 51 / 256
|
||||
softdouble::fromRaw(0x3fbe000000000000), // 30 / 256
|
||||
softdouble::fromRaw(0x3faa000000000000), // 13 / 256
|
||||
softdouble::fromRaw(0x3f90000000000000) // 4 / 256
|
||||
};
|
||||
result.assign(v9, v9 + 9);
|
||||
return softdouble::one();
|
||||
}
|
||||
}
|
||||
|
||||
CV_DbgAssert(fabs(sum) > 0);
|
||||
sum = 1./sum;
|
||||
for( i = 0; i < n; i++ )
|
||||
softdouble sd_0_15 = softdouble::fromRaw(0x3fc3333333333333); // 0.15
|
||||
softdouble sd_0_35 = softdouble::fromRaw(0x3fd6666666666666); // 0.35
|
||||
softdouble sd_minus_0_125 = softdouble::fromRaw(0xbfc0000000000000); // -0.5*0.25
|
||||
|
||||
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n), sd_0_15, sd_0_35);// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8)
|
||||
softdouble scale2X = sd_minus_0_125/(sigmaX*sigmaX);
|
||||
|
||||
int n2_ = (n - 1) / 2;
|
||||
cv::AutoBuffer<softdouble> values(n2_ + 1);
|
||||
softdouble sum = softdouble::zero();
|
||||
for (int i = 0, x = 1 - n; i < n2_; i++, x+=2)
|
||||
{
|
||||
if( ktype == CV_32F )
|
||||
cf[i] = (float)(cf[i]*sum);
|
||||
else
|
||||
cd[i] *= sum;
|
||||
// x = i - (n - 1)*0.5
|
||||
// t = std::exp(scale2X*x*x)
|
||||
softdouble t = exp(softdouble(x*x)*scale2X);
|
||||
values[i] = t;
|
||||
sum += t;
|
||||
}
|
||||
sum *= softdouble(2);
|
||||
//values[n2_] = softdouble::one(); // x=0 in exp(softdouble(x*x)*scale2X);
|
||||
sum += softdouble::one();
|
||||
if ((n & 1) == 0)
|
||||
{
|
||||
//values[n2_ + 1] = softdouble::one();
|
||||
sum += softdouble::one();
|
||||
}
|
||||
|
||||
// normalize: sum(k[i]) = 1
|
||||
softdouble mul1 = softdouble::one()/sum;
|
||||
|
||||
result.resize(n);
|
||||
|
||||
softdouble sum2 = softdouble::zero();
|
||||
for (int i = 0; i < n2_; i++ )
|
||||
{
|
||||
softdouble t = values[i] * mul1;
|
||||
result[i] = t;
|
||||
result[n - 1 - i] = t;
|
||||
sum2 += t;
|
||||
}
|
||||
sum2 *= softdouble(2);
|
||||
result[n2_] = /*values[n2_]*/ softdouble::one() * mul1;
|
||||
sum2 += result[n2_];
|
||||
if ((n & 1) == 0)
|
||||
{
|
||||
result[n2_ + 1] = result[n2_];
|
||||
sum2 += result[n2_];
|
||||
}
|
||||
|
||||
return sum2;
|
||||
}
|
||||
|
||||
Mat getGaussianKernel(int n, double sigma, int ktype)
|
||||
{
|
||||
CV_CheckDepth(ktype, ktype == CV_32F || ktype == CV_64F, "");
|
||||
Mat kernel(n, 1, ktype);
|
||||
|
||||
std::vector<softdouble> kernel_bitexact;
|
||||
getGaussianKernelBitExact(kernel_bitexact, n, sigma);
|
||||
|
||||
if (ktype == CV_32F)
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
kernel.at<float>(i) = (float)kernel_bitexact[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_DbgAssert(ktype == CV_64F);
|
||||
for (int i = 0; i < n; i++)
|
||||
kernel.at<double>(i) = kernel_bitexact[i];
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static std::vector<T> getFixedpointGaussianKernel( int n, double sigma )
|
||||
static
|
||||
softdouble getGaussianKernelFixedPoint_ED(CV_OUT std::vector<int64_t>& result, const std::vector<softdouble> kernel_bitexact, int fractionBits)
|
||||
{
|
||||
if (sigma <= 0)
|
||||
const int n = (int)kernel_bitexact.size();
|
||||
CV_Assert((n & 1) == 1); // odd
|
||||
|
||||
CV_CheckGT(fractionBits, 0, "");
|
||||
CV_CheckLE(fractionBits, 32, "");
|
||||
|
||||
int64_t fractionMultiplier = CV_BIG_INT(1) << fractionBits;
|
||||
softdouble fractionMultiplier_sd(fractionMultiplier);
|
||||
|
||||
result.resize(n);
|
||||
|
||||
int n2_ = n / 2; // n is odd
|
||||
softdouble err = softdouble::zero();
|
||||
int64_t sum = 0;
|
||||
for (int i = 0; i < n2_; i++)
|
||||
{
|
||||
if(n == 1)
|
||||
return std::vector<T>(1, softdouble(1.0));
|
||||
else if(n == 3)
|
||||
{
|
||||
T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) };
|
||||
return std::vector<T>(v3, v3 + 3);
|
||||
}
|
||||
else if(n == 5)
|
||||
{
|
||||
T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) };
|
||||
return std::vector<T>(v5, v5 + 5);
|
||||
}
|
||||
else if(n == 7)
|
||||
{
|
||||
T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) };
|
||||
return std::vector<T>(v7, v7 + 7);
|
||||
}
|
||||
//softdouble err0 = err;
|
||||
softdouble adj_v = kernel_bitexact[i] * fractionMultiplier_sd + err;
|
||||
int64_t v0 = cvRound(adj_v); // cvFloor() provides bad results
|
||||
err = adj_v - softdouble(v0);
|
||||
//printf("%3d: adj_v=%8.3f(%8.3f+%8.3f) v0=%d ed_err=%8.3f\n", i, (double)adj_v, (double)(kernel_bitexact[i] * fractionMultiplier_sd), (double)err0, (int)v0, (double)err);
|
||||
|
||||
result[i] = v0;
|
||||
result[n - 1 - i] = v0;
|
||||
sum += v0;
|
||||
}
|
||||
|
||||
|
||||
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8)
|
||||
softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX);
|
||||
std::vector<softdouble> values(n);
|
||||
softdouble sum(0.);
|
||||
for(int i = 0, x = 1 - n; i < n; i++, x+=2 )
|
||||
{
|
||||
// x = i - (n - 1)*0.5
|
||||
// t = std::exp(scale2X*x*x)
|
||||
values[i] = exp(softdouble(x*x)*scale2X);
|
||||
sum += values[i];
|
||||
}
|
||||
sum = softdouble::one()/sum;
|
||||
|
||||
std::vector<T> kernel(n);
|
||||
for(int i = 0; i < n; i++ )
|
||||
{
|
||||
kernel[i] = values[i] * sum;
|
||||
}
|
||||
|
||||
return kernel;
|
||||
};
|
||||
sum *= 2;
|
||||
softdouble adj_v_center = kernel_bitexact[n2_] * fractionMultiplier_sd + err;
|
||||
int64_t v_center = fractionMultiplier - sum;
|
||||
result[n2_] = v_center;
|
||||
//printf("center = %g ===> %g ===> %g\n", (double)(kernel_bitexact[n2_] * fractionMultiplier), (double)adj_v_center, (double)v_center);
|
||||
return (adj_v_center - softdouble(v_center));
|
||||
}
|
||||
|
||||
static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); }
|
||||
template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res) { res = getFixedpointGaussianKernel<T>(n, sigma); }
|
||||
template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res);
|
||||
//{ res = getFixedpointGaussianKernel<T>(n, sigma); }
|
||||
|
||||
template<> void getGaussianKernel<ufixedpoint16>(int n, double sigma, int, std::vector<ufixedpoint16>& res)
|
||||
{
|
||||
std::vector<softdouble> res_sd;
|
||||
softdouble s0 = getGaussianKernelBitExact(res_sd, n, sigma);
|
||||
CV_UNUSED(s0);
|
||||
|
||||
std::vector<int64_t> fixed_256;
|
||||
softdouble approx_err = getGaussianKernelFixedPoint_ED(fixed_256, res_sd, 8);
|
||||
CV_UNUSED(approx_err);
|
||||
|
||||
res.resize(n);
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
res[i] = ufixedpoint16::fromRaw((uint16_t)fixed_256[i]);
|
||||
//printf("%03d: %d\n", i, res[i].raw());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
|
||||
@ -477,6 +584,19 @@ static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename T>
|
||||
static bool validateGaussianBlurKernel(std::vector<T>& kernel)
|
||||
{
|
||||
softdouble validation_sum = softdouble::zero();
|
||||
for (size_t i = 0; i < kernel.size(); i++)
|
||||
{
|
||||
validation_sum += softdouble((double)kernel[i]);
|
||||
}
|
||||
|
||||
bool isValid = validation_sum == softdouble::one();
|
||||
return isValid;
|
||||
}
|
||||
|
||||
void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2,
|
||||
int borderType)
|
||||
@ -539,11 +659,24 @@ void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
{
|
||||
std::vector<ufixedpoint16> fkx, fky;
|
||||
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2);
|
||||
if (src.data == dst.data)
|
||||
src = src.clone();
|
||||
CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
return;
|
||||
|
||||
static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false);
|
||||
if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx))
|
||||
{
|
||||
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2));
|
||||
}
|
||||
else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky))
|
||||
{
|
||||
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2));
|
||||
}
|
||||
else
|
||||
{
|
||||
if (src.data == dst.data)
|
||||
src = src.clone();
|
||||
CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
|
||||
|
@ -59,6 +59,13 @@ protected:
|
||||
bool fp_kernel;
|
||||
bool inplace;
|
||||
int border;
|
||||
|
||||
void dump_test_case(int test_case_idx, std::ostream* out) CV_OVERRIDE
|
||||
{
|
||||
ArrayTest::dump_test_case(test_case_idx, out);
|
||||
*out << "border=" << border << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
@ -685,6 +692,12 @@ protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
const char* smooth_type;
|
||||
|
||||
void dump_test_case(int test_case_idx, std::ostream* out) CV_OVERRIDE
|
||||
{
|
||||
CV_FilterBaseTest::dump_test_case(test_case_idx, out);
|
||||
*out << "smooth_type=" << smooth_type << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -795,6 +808,12 @@ protected:
|
||||
double get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ );
|
||||
double sigma;
|
||||
int param1, param2;
|
||||
|
||||
void dump_test_case(int test_case_idx, std::ostream* out) CV_OVERRIDE
|
||||
{
|
||||
CV_SmoothBaseTest::dump_test_case(test_case_idx, out);
|
||||
*out << "kernel=(" << param1 << ", " << param2 << ") sigma=" << sigma << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -838,7 +857,7 @@ void CV_GaussianBlurTest::run_func()
|
||||
|
||||
// !!! Copied from cvSmooth, if the code is changed in cvSmooth,
|
||||
// make sure to update this one too.
|
||||
#define SMALL_GAUSSIAN_SIZE 7
|
||||
#define SMALL_GAUSSIAN_SIZE 9
|
||||
static void
|
||||
calcGaussianKernel( int n, double sigma, vector<float>& kernel )
|
||||
{
|
||||
@ -847,14 +866,15 @@ calcGaussianKernel( int n, double sigma, vector<float>& kernel )
|
||||
{1.f},
|
||||
{0.25f, 0.5f, 0.25f},
|
||||
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
|
||||
{0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125}
|
||||
{0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125},
|
||||
{4.0 / 256, 13.0 / 256, 30.0 / 256, 51.0 / 256, 60.0 / 256, 51.0 / 256, 30.0 / 256, 13.0 / 256, 4.0 / 256}
|
||||
};
|
||||
|
||||
kernel.resize(n);
|
||||
if( n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 )
|
||||
{
|
||||
assert( n%2 == 1 );
|
||||
memcpy( &kernel[0], small_gaussian_tab[n>>1], n*sizeof(kernel[0]));
|
||||
CV_Assert(n%2 == 1);
|
||||
memcpy(&kernel[0], small_gaussian_tab[n / 2], n*sizeof(kernel[0]));
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -14,11 +14,14 @@ namespace opencv_test { namespace {
|
||||
{ fixedOne >> 2, fixedOne >> 1, fixedOne >> 2 }, // size 3, sigma 0
|
||||
{ fixedOne >> 4, fixedOne >> 2, 6 * (fixedOne >> 4), fixedOne >> 2, fixedOne >> 4 }, // size 5, sigma 0
|
||||
{ fixedOne >> 5, 7 * (fixedOne >> 6), 7 * (fixedOne >> 5), 9 * (fixedOne >> 5), 7 * (fixedOne >> 5), 7 * (fixedOne >> 6), fixedOne >> 5 }, // size 7, sigma 0
|
||||
{ 4, 13, 30, 51, 61, 51, 30, 13, 4 }, // size 9, sigma 0
|
||||
{ 81, 95, 81 }, // size 3, sigma 1.75
|
||||
{ 65, 125, 65 }, // size 3, sigma 0.875
|
||||
{ 4, 13, 30, 51, 60, 51, 30, 13, 4 }, // size 9, sigma 0
|
||||
#if 1
|
||||
#define CV_TEST_INACCURATE_GAUSSIAN_BLUR
|
||||
{ 81, 94, 81 }, // size 3, sigma 1.75
|
||||
{ 65, 126, 65 }, // size 3, sigma 0.875
|
||||
{ 0, 7, 242, 7, 0 }, // size 5, sigma 0.375
|
||||
{ 4, 56, 136, 56, 4 } // size 5, sigma 0.75
|
||||
#endif
|
||||
};
|
||||
|
||||
template <typename T, int fixedShift>
|
||||
@ -68,11 +71,13 @@ TEST(GaussianBlur_Bitexact, Linear8U)
|
||||
{ CV_8UC1, Size( 256, 128), Size(5, 5), 0, 0, vector<int64_t>(v[2], v[2]+5), vector<int64_t>(v[2], v[2]+5) },
|
||||
{ CV_8UC1, Size( 256, 128), Size(7, 7), 0, 0, vector<int64_t>(v[3], v[3]+7), vector<int64_t>(v[3], v[3]+7) },
|
||||
{ CV_8UC1, Size( 256, 128), Size(9, 9), 0, 0, vector<int64_t>(v[4], v[4]+9), vector<int64_t>(v[4], v[4]+9) },
|
||||
#ifdef CV_TEST_INACCURATE_GAUSSIAN_BLUR
|
||||
{ CV_8UC1, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
||||
{ CV_8UC2, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
||||
{ CV_8UC3, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
||||
{ CV_8UC4, Size( 256, 128), Size(3, 3), 1.75, 0.875, vector<int64_t>(v[5], v[5]+3), vector<int64_t>(v[6], v[6]+3) },
|
||||
{ CV_8UC1, Size( 256, 128), Size(5, 5), 0.375, 0.75, vector<int64_t>(v[7], v[7]+5), vector<int64_t>(v[8], v[8]+5) }
|
||||
#endif
|
||||
};
|
||||
|
||||
int bordermodes[] = {
|
||||
@ -162,8 +167,28 @@ TEST(GaussianBlur_Bitexact, regression_15015)
|
||||
{
|
||||
Mat src(100,100,CV_8UC3,Scalar(255,255,255));
|
||||
Mat dst;
|
||||
GaussianBlur(src, dst, Size(5, 5), 9);
|
||||
GaussianBlur(src, dst, Size(5, 5), 0);
|
||||
ASSERT_EQ(0.0, cvtest::norm(dst, src, NORM_INF));
|
||||
}
|
||||
|
||||
|
||||
static void checkGaussianBlur_8Uvs32F(const Mat& src8u, const Mat& src32f, int N, double sigma)
|
||||
{
|
||||
Mat dst8u; GaussianBlur(src8u, dst8u, Size(N, N), sigma); // through bit-exact path
|
||||
Mat dst8u_32f; dst8u.convertTo(dst8u_32f, CV_32F);
|
||||
|
||||
Mat dst32f; GaussianBlur(src32f, dst32f, Size(N, N), sigma); // without bit-exact computations
|
||||
|
||||
double normINF_32f = cv::norm(dst8u_32f, dst32f, NORM_INF);
|
||||
EXPECT_LE(normINF_32f, 1.0);
|
||||
}
|
||||
|
||||
TEST(GaussianBlur_Bitexact, regression_9863)
|
||||
{
|
||||
Mat src8u = imread(cvtest::findDataFile("shared/lena.png"));
|
||||
Mat src32f; src8u.convertTo(src32f, CV_32F);
|
||||
|
||||
checkGaussianBlur_8Uvs32F(src8u, src32f, 151, 30);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
@ -50,7 +50,7 @@ class facedetect_test(NewOpenCVTests):
|
||||
|
||||
img = self.get_sample( sample)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
gray = cv.GaussianBlur(gray, (5, 5), 5.1)
|
||||
gray = cv.GaussianBlur(gray, (5, 5), 0)
|
||||
|
||||
rects = detect(gray, cascade)
|
||||
faces.append(rects)
|
||||
|
@ -428,6 +428,9 @@ protected:
|
||||
// updates progress bar
|
||||
virtual int update_progress( int progress, int test_case_idx, int count, double dt );
|
||||
|
||||
// dump test case input parameters
|
||||
virtual void dump_test_case(int test_case_idx, std::ostream* out);
|
||||
|
||||
// finds test parameter
|
||||
const CvFileNode* find_param( CvFileStorage* fs, const char* param_name );
|
||||
|
||||
|
@ -350,7 +350,13 @@ void BaseTest::run( int start_from )
|
||||
return;
|
||||
|
||||
if( validate_test_results( test_case_idx ) < 0 || ts->get_err_code() < 0 )
|
||||
{
|
||||
std::stringstream ss;
|
||||
dump_test_case(test_case_idx, &ss);
|
||||
std::string s = ss.str();
|
||||
ts->printf( TS::LOG, "%s", s.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -401,6 +407,12 @@ int BaseTest::update_progress( int progress, int test_case_idx, int count, doubl
|
||||
}
|
||||
|
||||
|
||||
void BaseTest::dump_test_case(int test_case_idx, std::ostream* out)
|
||||
{
|
||||
*out << "test_case_idx = " << test_case_idx << std::endl;
|
||||
}
|
||||
|
||||
|
||||
BadArgTest::BadArgTest()
|
||||
{
|
||||
test_case_idx = -1;
|
||||
|
Loading…
Reference in New Issue
Block a user