2020-09-29 18:45:40 +08:00
|
|
|
#ifndef OPENCV_GAPI_PYOPENCV_GAPI_HPP
|
|
|
|
#define OPENCV_GAPI_PYOPENCV_GAPI_HPP
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCV_GAPI
|
|
|
|
|
2021-03-31 04:59:02 +08:00
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(disable: 4503) // "decorated name length exceeded"
|
|
|
|
#endif
|
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
|
|
|
#include <opencv2/gapi/python/python.hpp>
|
|
|
|
|
2020-10-15 06:21:09 +08:00
|
|
|
// NB: Python wrapper replaces :: with _ for classes
|
2021-12-24 23:04:11 +08:00
|
|
|
using gapi_GKernelPackage = cv::GKernelPackage;
|
2021-08-24 17:37:50 +08:00
|
|
|
using gapi_GNetPackage = cv::gapi::GNetPackage;
|
|
|
|
using gapi_ie_PyParams = cv::gapi::ie::PyParams;
|
2022-05-20 19:49:15 +08:00
|
|
|
using gapi_onnx_PyParams = cv::gapi::onnx::PyParams;
|
2023-06-02 19:31:03 +08:00
|
|
|
using gapi_ov_PyParams = cv::gapi::ov::PyParams;
|
2021-08-24 17:37:50 +08:00
|
|
|
using gapi_wip_IStreamSource_Ptr = cv::Ptr<cv::gapi::wip::IStreamSource>;
|
|
|
|
using detail_ExtractArgsCallback = cv::detail::ExtractArgsCallback;
|
|
|
|
using detail_ExtractMetaCallback = cv::detail::ExtractMetaCallback;
|
|
|
|
using vector_GNetParam = std::vector<cv::gapi::GNetParam>;
|
2022-11-08 19:43:38 +08:00
|
|
|
using vector_GMat = std::vector<cv::GMat>;
|
2021-08-24 17:37:50 +08:00
|
|
|
using gapi_streaming_queue_capacity = cv::gapi::streaming::queue_capacity;
|
2022-01-26 22:01:13 +08:00
|
|
|
using GStreamerSource_OutputType = cv::gapi::wip::GStreamerSource::OutputType;
|
2023-06-02 19:31:03 +08:00
|
|
|
using map_string_and_int = std::map<std::string, int>;
|
|
|
|
using map_string_and_string = std::map<std::string, std::string>;
|
|
|
|
using map_string_and_string = std::map<std::string, std::string>;
|
|
|
|
using map_string_and_vector_size_t = std::map<std::string, std::vector<size_t>>;
|
|
|
|
using map_string_and_vector_float = std::map<std::string, std::vector<float>>;
|
2023-06-13 23:06:19 +08:00
|
|
|
using map_int_and_double = std::map<int, double>;
|
2021-03-01 23:52:11 +08:00
|
|
|
|
|
|
|
// NB: Python wrapper generate T_U for T<U>
|
|
|
|
// This behavior is only observed for inputs
|
|
|
|
using GOpaque_bool = cv::GOpaque<bool>;
|
|
|
|
using GOpaque_int = cv::GOpaque<int>;
|
|
|
|
using GOpaque_double = cv::GOpaque<double>;
|
|
|
|
using GOpaque_float = cv::GOpaque<double>;
|
|
|
|
using GOpaque_string = cv::GOpaque<std::string>;
|
2021-03-26 19:16:26 +08:00
|
|
|
using GOpaque_Point2i = cv::GOpaque<cv::Point>;
|
2021-03-01 23:52:11 +08:00
|
|
|
using GOpaque_Point2f = cv::GOpaque<cv::Point2f>;
|
|
|
|
using GOpaque_Size = cv::GOpaque<cv::Size>;
|
|
|
|
using GOpaque_Rect = cv::GOpaque<cv::Rect>;
|
|
|
|
|
|
|
|
using GArray_bool = cv::GArray<bool>;
|
|
|
|
using GArray_int = cv::GArray<int>;
|
|
|
|
using GArray_double = cv::GArray<double>;
|
|
|
|
using GArray_float = cv::GArray<double>;
|
|
|
|
using GArray_string = cv::GArray<std::string>;
|
2021-03-26 19:16:26 +08:00
|
|
|
using GArray_Point2i = cv::GArray<cv::Point>;
|
2021-03-01 23:52:11 +08:00
|
|
|
using GArray_Point2f = cv::GArray<cv::Point2f>;
|
2022-11-08 19:43:38 +08:00
|
|
|
using GArray_Point3f = cv::GArray<cv::Point3f>;
|
2021-03-01 23:52:11 +08:00
|
|
|
using GArray_Size = cv::GArray<cv::Size>;
|
|
|
|
using GArray_Rect = cv::GArray<cv::Rect>;
|
|
|
|
using GArray_Scalar = cv::GArray<cv::Scalar>;
|
|
|
|
using GArray_Mat = cv::GArray<cv::Mat>;
|
2021-03-26 00:55:29 +08:00
|
|
|
using GArray_GMat = cv::GArray<cv::GMat>;
|
2021-07-01 17:36:19 +08:00
|
|
|
using GArray_Prim = cv::GArray<cv::gapi::wip::draw::Prim>;
|
2020-10-15 06:21:09 +08:00
|
|
|
|
|
|
|
// FIXME: Python wrapper generate code without namespace std,
|
|
|
|
// so it cause error: "string wasn't declared"
|
|
|
|
// WA: Create using
|
|
|
|
using std::string;
|
2020-07-29 21:18:52 +08:00
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace detail
|
|
|
|
{
|
|
|
|
|
|
|
|
class PyObjectHolder
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
PyObjectHolder(PyObject* o, bool owner = true);
|
|
|
|
PyObject* get() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
class Impl;
|
|
|
|
std::shared_ptr<Impl> m_impl;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace cv
|
|
|
|
|
|
|
|
class cv::detail::PyObjectHolder::Impl
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Impl(PyObject* object, bool owner);
|
|
|
|
PyObject* get() const;
|
|
|
|
~Impl();
|
|
|
|
|
|
|
|
private:
|
|
|
|
PyObject* m_object;
|
|
|
|
};
|
|
|
|
|
|
|
|
cv::detail::PyObjectHolder::Impl::Impl(PyObject* object, bool owner)
|
|
|
|
: m_object(object)
|
|
|
|
{
|
|
|
|
// NB: Become an owner of that PyObject.
|
|
|
|
// Need to store this and get access
|
|
|
|
// after the caller which provide the object is out of range.
|
|
|
|
if (owner)
|
|
|
|
{
|
|
|
|
// NB: Impossible take ownership if object is NULL.
|
|
|
|
GAPI_Assert(object);
|
|
|
|
Py_INCREF(m_object);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::detail::PyObjectHolder::Impl::~Impl()
|
|
|
|
{
|
|
|
|
// NB: If NULL was set, don't decrease counter.
|
|
|
|
if (m_object)
|
|
|
|
{
|
|
|
|
Py_DECREF(m_object);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PyObject* cv::detail::PyObjectHolder::Impl::get() const
|
|
|
|
{
|
|
|
|
return m_object;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::detail::PyObjectHolder::PyObjectHolder(PyObject* object, bool owner)
|
|
|
|
: m_impl(new cv::detail::PyObjectHolder::Impl{object, owner})
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
PyObject* cv::detail::PyObjectHolder::get() const
|
|
|
|
{
|
|
|
|
return m_impl->get();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
PyObject* pyopencv_from(const cv::detail::PyObjectHolder& v)
|
|
|
|
{
|
|
|
|
PyObject* o = cv::util::any_cast<cv::detail::PyObjectHolder>(v).get();
|
|
|
|
Py_INCREF(o);
|
|
|
|
return o;
|
|
|
|
}
|
|
|
|
|
2021-07-01 17:36:19 +08:00
|
|
|
// #FIXME: Is it possible to implement pyopencv_from/pyopencv_to for generic
|
|
|
|
// cv::variant<Types...> ?
|
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const cv::gapi::wip::draw::Prim& prim)
|
|
|
|
{
|
2021-07-02 03:06:35 +08:00
|
|
|
switch (prim.index())
|
|
|
|
{
|
2021-07-01 17:36:19 +08:00
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Rect>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Rect>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Text>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Text>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Circle>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Circle>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Line>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Line>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Poly>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Poly>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Mosaic>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Mosaic>(prim));
|
|
|
|
case cv::gapi::wip::draw::Prim::index_of<cv::gapi::wip::draw::Image>():
|
|
|
|
return pyopencv_from(cv::util::get<cv::gapi::wip::draw::Image>(prim));
|
|
|
|
}
|
|
|
|
|
|
|
|
util::throw_error(std::logic_error("Unsupported draw primitive type"));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const cv::gapi::wip::draw::Prims& value)
|
|
|
|
{
|
|
|
|
return pyopencv_from_generic_vec(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
2021-08-24 17:37:50 +08:00
|
|
|
bool pyopencv_to(PyObject* obj, cv::gapi::wip::draw::Prim& value, const ArgInfo&)
|
2021-07-01 17:36:19 +08:00
|
|
|
{
|
|
|
|
#define TRY_EXTRACT(Prim) \
|
|
|
|
if (PyObject_TypeCheck(obj, reinterpret_cast<PyTypeObject*>(pyopencv_gapi_wip_draw_##Prim##_TypePtr))) \
|
|
|
|
{ \
|
|
|
|
value = reinterpret_cast<pyopencv_gapi_wip_draw_##Prim##_t*>(obj)->v; \
|
|
|
|
return true; \
|
|
|
|
} \
|
|
|
|
|
|
|
|
TRY_EXTRACT(Rect)
|
|
|
|
TRY_EXTRACT(Text)
|
|
|
|
TRY_EXTRACT(Circle)
|
|
|
|
TRY_EXTRACT(Line)
|
|
|
|
TRY_EXTRACT(Mosaic)
|
|
|
|
TRY_EXTRACT(Image)
|
|
|
|
TRY_EXTRACT(Poly)
|
2021-08-24 17:37:50 +08:00
|
|
|
#undef TRY_EXTRACT
|
2021-07-01 17:36:19 +08:00
|
|
|
|
|
|
|
failmsg("Unsupported primitive type");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::gapi::wip::draw::Prims& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
|
|
}
|
|
|
|
|
2021-08-24 17:37:50 +08:00
|
|
|
template <>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::GMetaArg& value, const ArgInfo&)
|
|
|
|
{
|
|
|
|
#define TRY_EXTRACT(Meta) \
|
|
|
|
if (PyObject_TypeCheck(obj, \
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_##Meta##_TypePtr))) \
|
|
|
|
{ \
|
|
|
|
value = reinterpret_cast<pyopencv_##Meta##_t*>(obj)->v; \
|
|
|
|
return true; \
|
|
|
|
} \
|
|
|
|
|
|
|
|
TRY_EXTRACT(GMatDesc)
|
|
|
|
TRY_EXTRACT(GScalarDesc)
|
|
|
|
TRY_EXTRACT(GArrayDesc)
|
|
|
|
TRY_EXTRACT(GOpaqueDesc)
|
|
|
|
#undef TRY_EXTRACT
|
|
|
|
|
|
|
|
failmsg("Unsupported cv::GMetaArg type");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::GMetaArgs& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
template<>
|
|
|
|
PyObject* pyopencv_from(const cv::GArg& value)
|
|
|
|
{
|
|
|
|
GAPI_Assert(value.kind != cv::detail::ArgKind::GOBJREF);
|
|
|
|
#define HANDLE_CASE(T, O) case cv::detail::OpaqueKind::CV_##T: \
|
|
|
|
{ \
|
|
|
|
return pyopencv_from(value.get<O>()); \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define UNSUPPORTED(T) case cv::detail::OpaqueKind::CV_##T: break
|
|
|
|
switch (value.opaque_kind)
|
|
|
|
{
|
2021-07-01 17:36:19 +08:00
|
|
|
HANDLE_CASE(BOOL, bool);
|
|
|
|
HANDLE_CASE(INT, int);
|
2022-01-26 22:01:13 +08:00
|
|
|
HANDLE_CASE(INT64, int64_t);
|
2021-07-01 17:36:19 +08:00
|
|
|
HANDLE_CASE(DOUBLE, double);
|
|
|
|
HANDLE_CASE(FLOAT, float);
|
|
|
|
HANDLE_CASE(STRING, std::string);
|
|
|
|
HANDLE_CASE(POINT, cv::Point);
|
|
|
|
HANDLE_CASE(POINT2F, cv::Point2f);
|
2022-11-08 19:43:38 +08:00
|
|
|
HANDLE_CASE(POINT3F, cv::Point3f);
|
2021-07-01 17:36:19 +08:00
|
|
|
HANDLE_CASE(SIZE, cv::Size);
|
|
|
|
HANDLE_CASE(RECT, cv::Rect);
|
|
|
|
HANDLE_CASE(SCALAR, cv::Scalar);
|
|
|
|
HANDLE_CASE(MAT, cv::Mat);
|
|
|
|
HANDLE_CASE(UNKNOWN, cv::detail::PyObjectHolder);
|
|
|
|
HANDLE_CASE(DRAW_PRIM, cv::gapi::wip::draw::Prim);
|
2021-05-21 02:59:53 +08:00
|
|
|
UNSUPPORTED(UINT64);
|
|
|
|
#undef HANDLE_CASE
|
|
|
|
#undef UNSUPPORTED
|
|
|
|
}
|
|
|
|
util::throw_error(std::logic_error("Unsupported kernel input type"));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::GArg& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
value = cv::GArg(cv::detail::PyObjectHolder(obj));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
template <>
|
2021-06-30 17:04:09 +08:00
|
|
|
bool pyopencv_to(PyObject* obj, std::vector<cv::gapi::GNetParam>& value, const ArgInfo& info)
|
2020-07-29 21:18:52 +08:00
|
|
|
{
|
|
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
|
|
}
|
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
template <>
|
2021-06-30 17:04:09 +08:00
|
|
|
PyObject* pyopencv_from(const std::vector<cv::gapi::GNetParam>& value)
|
2020-07-29 21:18:52 +08:00
|
|
|
{
|
|
|
|
return pyopencv_from_generic_vec(value);
|
|
|
|
}
|
2020-09-18 03:00:03 +08:00
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
template <>
|
2021-06-30 17:04:09 +08:00
|
|
|
bool pyopencv_to(PyObject* obj, std::vector<GCompileArg>& value, const ArgInfo& info)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
|
|
|
return pyopencv_to_generic_vec(obj, value, info);
|
|
|
|
}
|
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const std::vector<GCompileArg>& value)
|
|
|
|
{
|
|
|
|
return pyopencv_from_generic_vec(value);
|
|
|
|
}
|
|
|
|
|
2021-03-26 00:55:29 +08:00
|
|
|
template<>
|
2021-03-01 23:52:11 +08:00
|
|
|
PyObject* pyopencv_from(const cv::detail::OpaqueRef& o)
|
|
|
|
{
|
|
|
|
switch (o.getKind())
|
|
|
|
{
|
|
|
|
case cv::detail::OpaqueKind::CV_BOOL : return pyopencv_from(o.rref<bool>());
|
|
|
|
case cv::detail::OpaqueKind::CV_INT : return pyopencv_from(o.rref<int>());
|
2021-06-30 17:04:09 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_INT64 : return pyopencv_from(o.rref<int64_t>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_DOUBLE : return pyopencv_from(o.rref<double>());
|
|
|
|
case cv::detail::OpaqueKind::CV_FLOAT : return pyopencv_from(o.rref<float>());
|
|
|
|
case cv::detail::OpaqueKind::CV_STRING : return pyopencv_from(o.rref<std::string>());
|
|
|
|
case cv::detail::OpaqueKind::CV_POINT : return pyopencv_from(o.rref<cv::Point>());
|
|
|
|
case cv::detail::OpaqueKind::CV_POINT2F : return pyopencv_from(o.rref<cv::Point2f>());
|
2022-11-08 19:43:38 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_POINT3F : return pyopencv_from(o.rref<cv::Point3f>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_SIZE : return pyopencv_from(o.rref<cv::Size>());
|
|
|
|
case cv::detail::OpaqueKind::CV_RECT : return pyopencv_from(o.rref<cv::Rect>());
|
2021-05-21 02:59:53 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_UNKNOWN : return pyopencv_from(o.rref<cv::GArg>());
|
2021-07-01 17:36:19 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_DRAW_PRIM : return pyopencv_from(o.rref<cv::gapi::wip::draw::Prim>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_UINT64 : break;
|
|
|
|
case cv::detail::OpaqueKind::CV_SCALAR : break;
|
|
|
|
case cv::detail::OpaqueKind::CV_MAT : break;
|
|
|
|
}
|
|
|
|
|
|
|
|
PyErr_SetString(PyExc_TypeError, "Unsupported GOpaque type");
|
|
|
|
return NULL;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const cv::detail::VectorRef& v)
|
|
|
|
{
|
|
|
|
switch (v.getKind())
|
|
|
|
{
|
|
|
|
case cv::detail::OpaqueKind::CV_BOOL : return pyopencv_from_generic_vec(v.rref<bool>());
|
|
|
|
case cv::detail::OpaqueKind::CV_INT : return pyopencv_from_generic_vec(v.rref<int>());
|
2021-06-30 17:04:09 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_INT64 : return pyopencv_from_generic_vec(v.rref<int64_t>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_DOUBLE : return pyopencv_from_generic_vec(v.rref<double>());
|
|
|
|
case cv::detail::OpaqueKind::CV_FLOAT : return pyopencv_from_generic_vec(v.rref<float>());
|
|
|
|
case cv::detail::OpaqueKind::CV_STRING : return pyopencv_from_generic_vec(v.rref<std::string>());
|
|
|
|
case cv::detail::OpaqueKind::CV_POINT : return pyopencv_from_generic_vec(v.rref<cv::Point>());
|
|
|
|
case cv::detail::OpaqueKind::CV_POINT2F : return pyopencv_from_generic_vec(v.rref<cv::Point2f>());
|
2022-11-08 19:43:38 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_POINT3F : return pyopencv_from_generic_vec(v.rref<cv::Point3f>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_SIZE : return pyopencv_from_generic_vec(v.rref<cv::Size>());
|
|
|
|
case cv::detail::OpaqueKind::CV_RECT : return pyopencv_from_generic_vec(v.rref<cv::Rect>());
|
|
|
|
case cv::detail::OpaqueKind::CV_SCALAR : return pyopencv_from_generic_vec(v.rref<cv::Scalar>());
|
|
|
|
case cv::detail::OpaqueKind::CV_MAT : return pyopencv_from_generic_vec(v.rref<cv::Mat>());
|
2021-05-21 02:59:53 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_UNKNOWN : return pyopencv_from_generic_vec(v.rref<cv::GArg>());
|
2021-07-01 17:36:19 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_DRAW_PRIM : return pyopencv_from_generic_vec(v.rref<cv::gapi::wip::draw::Prim>());
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::detail::OpaqueKind::CV_UINT64 : break;
|
|
|
|
}
|
|
|
|
|
|
|
|
PyErr_SetString(PyExc_TypeError, "Unsupported GArray type");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const GRunArg& v)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
|
|
|
switch (v.index())
|
|
|
|
{
|
|
|
|
case GRunArg::index_of<cv::Mat>():
|
2021-03-01 23:52:11 +08:00
|
|
|
return pyopencv_from(util::get<cv::Mat>(v));
|
2020-09-29 18:45:40 +08:00
|
|
|
|
|
|
|
case GRunArg::index_of<cv::Scalar>():
|
2021-03-01 23:52:11 +08:00
|
|
|
return pyopencv_from(util::get<cv::Scalar>(v));
|
|
|
|
|
2020-11-28 01:39:46 +08:00
|
|
|
case GRunArg::index_of<cv::detail::VectorRef>():
|
2021-03-01 23:52:11 +08:00
|
|
|
return pyopencv_from(util::get<cv::detail::VectorRef>(v));
|
|
|
|
|
|
|
|
case GRunArg::index_of<cv::detail::OpaqueRef>():
|
|
|
|
return pyopencv_from(util::get<cv::detail::OpaqueRef>(v));
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError, "Failed to unpack GRunArgs. Index of variant is unknown");
|
2021-03-01 23:52:11 +08:00
|
|
|
return NULL;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
template <typename T>
|
|
|
|
PyObject* pyopencv_from(const cv::optional<T>& opt)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-07-02 03:06:35 +08:00
|
|
|
if (!opt.has_value())
|
|
|
|
{
|
|
|
|
Py_RETURN_NONE;
|
|
|
|
}
|
|
|
|
return pyopencv_from(*opt);
|
|
|
|
}
|
2020-09-29 18:45:40 +08:00
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const GOptRunArg& v)
|
|
|
|
{
|
|
|
|
switch (v.index())
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-07-02 03:06:35 +08:00
|
|
|
case GOptRunArg::index_of<cv::optional<cv::Mat>>():
|
|
|
|
return pyopencv_from(util::get<cv::optional<cv::Mat>>(v));
|
|
|
|
|
|
|
|
case GOptRunArg::index_of<cv::optional<cv::Scalar>>():
|
|
|
|
return pyopencv_from(util::get<cv::optional<cv::Scalar>>(v));
|
|
|
|
|
|
|
|
case GOptRunArg::index_of<optional<cv::detail::VectorRef>>():
|
|
|
|
return pyopencv_from(util::get<optional<cv::detail::VectorRef>>(v));
|
|
|
|
|
|
|
|
case GOptRunArg::index_of<optional<cv::detail::OpaqueRef>>():
|
|
|
|
return pyopencv_from(util::get<optional<cv::detail::OpaqueRef>>(v));
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError, "Failed to unpack GOptRunArg. Index of variant is unknown");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
PyObject* pyopencv_from(const GRunArgs& value)
|
|
|
|
{
|
|
|
|
return value.size() == 1 ? pyopencv_from(value[0]) : pyopencv_from_generic_vec(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
PyObject* pyopencv_from(const GOptRunArgs& value)
|
|
|
|
{
|
|
|
|
return value.size() == 1 ? pyopencv_from(value[0]) : pyopencv_from_generic_vec(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: cv::variant should be wrapped once for all types.
|
|
|
|
template <>
|
|
|
|
PyObject* pyopencv_from(const cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>& v)
|
|
|
|
{
|
|
|
|
using RunArgs = cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>;
|
|
|
|
switch (v.index())
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-07-02 03:06:35 +08:00
|
|
|
case RunArgs::index_of<cv::GRunArgs>():
|
|
|
|
return pyopencv_from(util::get<cv::GRunArgs>(v));
|
|
|
|
case RunArgs::index_of<cv::GOptRunArgs>():
|
|
|
|
return pyopencv_from(util::get<cv::GOptRunArgs>(v));
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError, "Failed to recognize kind of RunArgs. Index of variant is unknown");
|
|
|
|
return NULL;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
template <typename T>
|
|
|
|
void pyopencv_to_with_check(PyObject* from, T& to, const std::string& msg = "")
|
|
|
|
{
|
|
|
|
if (!pyopencv_to(from, to, ArgInfo("", false)))
|
|
|
|
{
|
|
|
|
cv::util::throw_error(std::logic_error(msg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void pyopencv_to_generic_vec_with_check(PyObject* from,
|
|
|
|
std::vector<T>& to,
|
|
|
|
const std::string& msg = "")
|
|
|
|
{
|
|
|
|
if (!pyopencv_to_generic_vec(from, to, ArgInfo("", false)))
|
|
|
|
{
|
|
|
|
cv::util::throw_error(std::logic_error(msg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-09-18 03:00:03 +08:00
|
|
|
template <typename T>
|
2021-06-30 17:04:09 +08:00
|
|
|
static T extract_proto_args(PyObject* py_args)
|
2020-09-18 03:00:03 +08:00
|
|
|
{
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
GProtoArgs args;
|
2021-06-30 17:04:09 +08:00
|
|
|
Py_ssize_t size = PyList_Size(py_args);
|
2021-03-26 00:55:29 +08:00
|
|
|
args.reserve(size);
|
2020-09-29 18:45:40 +08:00
|
|
|
for (int i = 0; i < size; ++i)
|
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
PyObject* item = PyList_GetItem(py_args, i);
|
2020-09-29 18:45:40 +08:00
|
|
|
if (PyObject_TypeCheck(item, reinterpret_cast<PyTypeObject*>(pyopencv_GScalar_TypePtr)))
|
|
|
|
{
|
2020-09-18 03:00:03 +08:00
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GScalar_t*>(item)->v);
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
else if (PyObject_TypeCheck(item, reinterpret_cast<PyTypeObject*>(pyopencv_GMat_TypePtr)))
|
|
|
|
{
|
2020-09-18 03:00:03 +08:00
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GMat_t*>(item)->v);
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
else if (PyObject_TypeCheck(item, reinterpret_cast<PyTypeObject*>(pyopencv_GOpaqueT_TypePtr)))
|
|
|
|
{
|
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GOpaqueT_t*>(item)->v.strip());
|
|
|
|
}
|
|
|
|
else if (PyObject_TypeCheck(item, reinterpret_cast<PyTypeObject*>(pyopencv_GArrayT_TypePtr)))
|
2020-11-28 01:39:46 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GArrayT_t*>(item)->v.strip());
|
2020-11-28 01:39:46 +08:00
|
|
|
}
|
2020-09-29 18:45:40 +08:00
|
|
|
else
|
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
util::throw_error(std::logic_error("Unsupported type for GProtoArgs"));
|
2020-09-18 03:00:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
return T(std::move(args));
|
2020-09-18 03:00:03 +08:00
|
|
|
}
|
2020-09-29 18:45:40 +08:00
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
static cv::detail::OpaqueRef extract_opaque_ref(PyObject* from, cv::detail::OpaqueKind kind)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
#define HANDLE_CASE(T, O) case cv::detail::OpaqueKind::CV_##T: \
|
|
|
|
{ \
|
|
|
|
O obj{}; \
|
|
|
|
pyopencv_to_with_check(from, obj, "Failed to obtain " # O); \
|
|
|
|
return cv::detail::OpaqueRef{std::move(obj)}; \
|
|
|
|
}
|
|
|
|
#define UNSUPPORTED(T) case cv::detail::OpaqueKind::CV_##T: break
|
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
HANDLE_CASE(BOOL, bool);
|
|
|
|
HANDLE_CASE(INT, int);
|
|
|
|
HANDLE_CASE(DOUBLE, double);
|
|
|
|
HANDLE_CASE(FLOAT, float);
|
|
|
|
HANDLE_CASE(STRING, std::string);
|
|
|
|
HANDLE_CASE(POINT, cv::Point);
|
|
|
|
HANDLE_CASE(POINT2F, cv::Point2f);
|
2022-11-08 19:43:38 +08:00
|
|
|
HANDLE_CASE(POINT3F, cv::Point3f);
|
2021-03-01 23:52:11 +08:00
|
|
|
HANDLE_CASE(SIZE, cv::Size);
|
|
|
|
HANDLE_CASE(RECT, cv::Rect);
|
2021-05-21 02:59:53 +08:00
|
|
|
HANDLE_CASE(UNKNOWN, cv::GArg);
|
2021-03-01 23:52:11 +08:00
|
|
|
UNSUPPORTED(UINT64);
|
2021-06-30 17:04:09 +08:00
|
|
|
UNSUPPORTED(INT64);
|
2021-03-01 23:52:11 +08:00
|
|
|
UNSUPPORTED(SCALAR);
|
|
|
|
UNSUPPORTED(MAT);
|
|
|
|
UNSUPPORTED(DRAW_PRIM);
|
|
|
|
#undef HANDLE_CASE
|
|
|
|
#undef UNSUPPORTED
|
2021-03-26 19:16:26 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
util::throw_error(std::logic_error("Unsupported type for GOpaqueT"));
|
|
|
|
}
|
|
|
|
|
|
|
|
static cv::detail::VectorRef extract_vector_ref(PyObject* from, cv::detail::OpaqueKind kind)
|
|
|
|
{
|
|
|
|
#define HANDLE_CASE(T, O) case cv::detail::OpaqueKind::CV_##T: \
|
|
|
|
{ \
|
|
|
|
std::vector<O> obj; \
|
|
|
|
pyopencv_to_generic_vec_with_check(from, obj, "Failed to obtain vector of " # O); \
|
|
|
|
return cv::detail::VectorRef{std::move(obj)}; \
|
|
|
|
}
|
|
|
|
#define UNSUPPORTED(T) case cv::detail::OpaqueKind::CV_##T: break
|
|
|
|
switch (kind)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-07-01 17:36:19 +08:00
|
|
|
HANDLE_CASE(BOOL, bool);
|
|
|
|
HANDLE_CASE(INT, int);
|
|
|
|
HANDLE_CASE(DOUBLE, double);
|
|
|
|
HANDLE_CASE(FLOAT, float);
|
|
|
|
HANDLE_CASE(STRING, std::string);
|
|
|
|
HANDLE_CASE(POINT, cv::Point);
|
|
|
|
HANDLE_CASE(POINT2F, cv::Point2f);
|
2022-11-08 19:43:38 +08:00
|
|
|
HANDLE_CASE(POINT3F, cv::Point3f);
|
2021-07-01 17:36:19 +08:00
|
|
|
HANDLE_CASE(SIZE, cv::Size);
|
|
|
|
HANDLE_CASE(RECT, cv::Rect);
|
|
|
|
HANDLE_CASE(SCALAR, cv::Scalar);
|
|
|
|
HANDLE_CASE(MAT, cv::Mat);
|
|
|
|
HANDLE_CASE(UNKNOWN, cv::GArg);
|
|
|
|
HANDLE_CASE(DRAW_PRIM, cv::gapi::wip::draw::Prim);
|
2021-03-01 23:52:11 +08:00
|
|
|
UNSUPPORTED(UINT64);
|
2021-06-30 17:04:09 +08:00
|
|
|
UNSUPPORTED(INT64);
|
2021-03-01 23:52:11 +08:00
|
|
|
#undef HANDLE_CASE
|
|
|
|
#undef UNSUPPORTED
|
|
|
|
}
|
2021-03-26 19:16:26 +08:00
|
|
|
util::throw_error(std::logic_error("Unsupported type for GArrayT"));
|
2021-03-01 23:52:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static cv::GRunArg extract_run_arg(const cv::GTypeInfo& info, PyObject* item)
|
|
|
|
{
|
|
|
|
switch (info.shape)
|
|
|
|
{
|
|
|
|
case cv::GShape::GMAT:
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
// NB: In case streaming it can be IStreamSource or cv::Mat
|
|
|
|
if (PyObject_TypeCheck(item,
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_gapi_wip_IStreamSource_TypePtr)))
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
cv::gapi::wip::IStreamSource::Ptr source =
|
|
|
|
reinterpret_cast<pyopencv_gapi_wip_IStreamSource_t*>(item)->v;
|
|
|
|
return source;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
2021-03-26 00:55:29 +08:00
|
|
|
cv::Mat obj;
|
|
|
|
pyopencv_to_with_check(item, obj, "Failed to obtain cv::Mat");
|
|
|
|
return obj;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::GShape::GSCALAR:
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
cv::Scalar obj;
|
|
|
|
pyopencv_to_with_check(item, obj, "Failed to obtain cv::Scalar");
|
|
|
|
return obj;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::GShape::GOPAQUE:
|
2020-10-15 06:21:09 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
return extract_opaque_ref(item, info.kind);
|
2020-10-15 06:21:09 +08:00
|
|
|
}
|
2021-03-01 23:52:11 +08:00
|
|
|
case cv::GShape::GARRAY:
|
2020-10-15 06:21:09 +08:00
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
return extract_vector_ref(item, info.kind);
|
|
|
|
}
|
|
|
|
case cv::GShape::GFRAME:
|
|
|
|
{
|
2021-03-26 19:16:26 +08:00
|
|
|
// NB: Isn't supported yet.
|
2021-03-01 23:52:11 +08:00
|
|
|
break;
|
2020-10-15 06:21:09 +08:00
|
|
|
}
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
util::throw_error(std::logic_error("Unsupported output shape"));
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
static cv::GRunArgs extract_run_args(const cv::GTypesInfo& info, PyObject* py_args)
|
2020-09-29 18:45:40 +08:00
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
GAPI_Assert(PyList_Check(py_args));
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
cv::GRunArgs args;
|
2021-06-30 17:04:09 +08:00
|
|
|
Py_ssize_t list_size = PyList_Size(py_args);
|
|
|
|
args.reserve(list_size);
|
2021-03-01 23:52:11 +08:00
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
for (int i = 0; i < list_size; ++i)
|
2021-03-01 23:52:11 +08:00
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
args.push_back(extract_run_arg(info[i], PyList_GetItem(py_args, i)));
|
2021-03-01 23:52:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return args;
|
2020-09-29 18:45:40 +08:00
|
|
|
}
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
static cv::GMetaArg extract_meta_arg(const cv::GTypeInfo& info, PyObject* item)
|
|
|
|
{
|
|
|
|
switch (info.shape)
|
|
|
|
{
|
|
|
|
case cv::GShape::GMAT:
|
|
|
|
{
|
|
|
|
cv::Mat obj;
|
|
|
|
pyopencv_to_with_check(item, obj, "Failed to obtain cv::Mat");
|
|
|
|
return cv::GMetaArg{cv::descr_of(obj)};
|
|
|
|
}
|
|
|
|
case cv::GShape::GSCALAR:
|
|
|
|
{
|
|
|
|
cv::Scalar obj;
|
|
|
|
pyopencv_to_with_check(item, obj, "Failed to obtain cv::Scalar");
|
|
|
|
return cv::GMetaArg{cv::descr_of(obj)};
|
|
|
|
}
|
|
|
|
case cv::GShape::GARRAY:
|
|
|
|
{
|
|
|
|
return cv::GMetaArg{cv::empty_array_desc()};
|
|
|
|
}
|
|
|
|
case cv::GShape::GOPAQUE:
|
|
|
|
{
|
|
|
|
return cv::GMetaArg{cv::empty_gopaque_desc()};
|
|
|
|
}
|
|
|
|
case cv::GShape::GFRAME:
|
|
|
|
{
|
|
|
|
// NB: Isn't supported yet.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
util::throw_error(std::logic_error("Unsupported output shape"));
|
|
|
|
}
|
|
|
|
|
|
|
|
static cv::GMetaArgs extract_meta_args(const cv::GTypesInfo& info, PyObject* py_args)
|
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
GAPI_Assert(PyList_Check(py_args));
|
|
|
|
|
2021-03-01 23:52:11 +08:00
|
|
|
cv::GMetaArgs metas;
|
2021-06-30 17:04:09 +08:00
|
|
|
Py_ssize_t list_size = PyList_Size(py_args);
|
|
|
|
metas.reserve(list_size);
|
2021-03-01 23:52:11 +08:00
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
for (int i = 0; i < list_size; ++i)
|
2021-03-01 23:52:11 +08:00
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
metas.push_back(extract_meta_arg(info[i], PyList_GetItem(py_args, i)));
|
2021-03-01 23:52:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return metas;
|
|
|
|
}
|
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
static cv::GRunArgs run_py_kernel(cv::detail::PyObjectHolder kernel,
|
2021-03-26 19:16:26 +08:00
|
|
|
const cv::gapi::python::GPythonContext &ctx)
|
|
|
|
{
|
|
|
|
const auto& ins = ctx.ins;
|
|
|
|
const auto& in_metas = ctx.in_metas;
|
|
|
|
const auto& out_info = ctx.out_info;
|
|
|
|
|
|
|
|
PyGILState_STATE gstate;
|
|
|
|
gstate = PyGILState_Ensure();
|
|
|
|
|
|
|
|
cv::GRunArgs outs;
|
|
|
|
try
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
// NB: Doesn't increase reference counter (false),
|
|
|
|
// because PyObject already have ownership.
|
|
|
|
// In case exception decrement reference counter.
|
2022-09-06 15:52:35 +08:00
|
|
|
cv::detail::PyObjectHolder args(
|
|
|
|
PyTuple_New(ctx.m_state.has_value() ? ins.size() + 1 : ins.size()), false);
|
2021-03-26 19:16:26 +08:00
|
|
|
for (size_t i = 0; i < ins.size(); ++i)
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
// NB: If meta is monostate then object isn't associated with G-TYPE.
|
2021-03-26 19:16:26 +08:00
|
|
|
if (cv::util::holds_alternative<cv::util::monostate>(in_metas[i]))
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyTuple_SetItem(args.get(), i, pyopencv_from(ins[i]));
|
2021-03-26 19:16:26 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (in_metas[i].index())
|
|
|
|
{
|
|
|
|
case cv::GMetaArg::index_of<cv::GMatDesc>():
|
2021-05-21 02:59:53 +08:00
|
|
|
PyTuple_SetItem(args.get(), i, pyopencv_from(ins[i].get<cv::Mat>()));
|
2021-03-26 19:16:26 +08:00
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GScalarDesc>():
|
2021-05-21 02:59:53 +08:00
|
|
|
PyTuple_SetItem(args.get(), i, pyopencv_from(ins[i].get<cv::Scalar>()));
|
2021-03-26 19:16:26 +08:00
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GOpaqueDesc>():
|
2021-05-21 02:59:53 +08:00
|
|
|
PyTuple_SetItem(args.get(), i, pyopencv_from(ins[i].get<cv::detail::OpaqueRef>()));
|
2021-03-26 19:16:26 +08:00
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GArrayDesc>():
|
2021-05-21 02:59:53 +08:00
|
|
|
PyTuple_SetItem(args.get(), i, pyopencv_from(ins[i].get<cv::detail::VectorRef>()));
|
2021-03-26 19:16:26 +08:00
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GFrameDesc>():
|
|
|
|
util::throw_error(std::logic_error("GFrame isn't supported for custom operation"));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2022-05-26 00:12:51 +08:00
|
|
|
|
2022-09-06 15:52:35 +08:00
|
|
|
if (ctx.m_state.has_value())
|
2022-05-26 00:12:51 +08:00
|
|
|
{
|
2022-09-06 15:52:35 +08:00
|
|
|
PyTuple_SetItem(args.get(), ins.size(), pyopencv_from(ctx.m_state.value()));
|
2022-05-26 00:12:51 +08:00
|
|
|
}
|
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
// NB: Doesn't increase reference counter (false).
|
|
|
|
// In case PyObject_CallObject return NULL, do nothing in destructor.
|
|
|
|
cv::detail::PyObjectHolder result(
|
|
|
|
PyObject_CallObject(kernel.get(), args.get()), false);
|
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
if (PyErr_Occurred())
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_PrintEx(0);
|
|
|
|
PyErr_Clear();
|
|
|
|
throw std::logic_error("Python kernel failed with error!");
|
|
|
|
}
|
2022-04-14 01:06:37 +08:00
|
|
|
// NB: In fact it's impossible situation, because errors were handled above.
|
2021-05-21 02:59:53 +08:00
|
|
|
GAPI_Assert(result.get() && "Python kernel returned NULL!");
|
2021-03-26 19:16:26 +08:00
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
if (out_info.size() == 1)
|
|
|
|
{
|
|
|
|
outs = cv::GRunArgs{extract_run_arg(out_info[0], result.get())};
|
|
|
|
}
|
|
|
|
else if (out_info.size() > 1)
|
|
|
|
{
|
|
|
|
GAPI_Assert(PyTuple_Check(result.get()));
|
|
|
|
|
|
|
|
Py_ssize_t tuple_size = PyTuple_Size(result.get());
|
|
|
|
outs.reserve(tuple_size);
|
|
|
|
|
|
|
|
for (int i = 0; i < tuple_size; ++i)
|
|
|
|
{
|
|
|
|
outs.push_back(extract_run_arg(out_info[i], PyTuple_GetItem(result.get(), i)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Seems to be impossible case.
|
2022-12-19 14:05:15 +08:00
|
|
|
GAPI_Error("InternalError");
|
2021-06-30 17:04:09 +08:00
|
|
|
}
|
2021-03-26 19:16:26 +08:00
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
|
|
|
|
return outs;
|
|
|
|
}
|
|
|
|
|
2022-09-06 15:52:35 +08:00
|
|
|
static void unpackMetasToTuple(const cv::GMetaArgs& meta,
|
|
|
|
const cv::GArgs& gargs,
|
|
|
|
cv::detail::PyObjectHolder& tuple)
|
|
|
|
{
|
|
|
|
size_t idx = 0;
|
|
|
|
for (auto&& m : meta)
|
|
|
|
{
|
|
|
|
switch (m.index())
|
|
|
|
{
|
|
|
|
case cv::GMetaArg::index_of<cv::GMatDesc>():
|
|
|
|
PyTuple_SetItem(tuple.get(), idx, pyopencv_from(cv::util::get<cv::GMatDesc>(m)));
|
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GScalarDesc>():
|
|
|
|
PyTuple_SetItem(tuple.get(), idx,
|
|
|
|
pyopencv_from(cv::util::get<cv::GScalarDesc>(m)));
|
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GArrayDesc>():
|
|
|
|
PyTuple_SetItem(tuple.get(), idx,
|
|
|
|
pyopencv_from(cv::util::get<cv::GArrayDesc>(m)));
|
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GOpaqueDesc>():
|
|
|
|
PyTuple_SetItem(tuple.get(), idx,
|
|
|
|
pyopencv_from(cv::util::get<cv::GOpaqueDesc>(m)));
|
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::util::monostate>():
|
|
|
|
PyTuple_SetItem(tuple.get(), idx, pyopencv_from(gargs[idx]));
|
|
|
|
break;
|
|
|
|
case cv::GMetaArg::index_of<cv::GFrameDesc>():
|
|
|
|
util::throw_error(
|
|
|
|
std::logic_error("GFrame isn't supported for custom operation"));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
++idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
static cv::GArg run_py_setup(cv::detail::PyObjectHolder setup,
|
|
|
|
const cv::GMetaArgs &meta,
|
|
|
|
const cv::GArgs &gargs)
|
2022-05-26 00:12:51 +08:00
|
|
|
{
|
|
|
|
PyGILState_STATE gstate;
|
|
|
|
gstate = PyGILState_Ensure();
|
|
|
|
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
cv::GArg state;
|
2022-05-26 00:12:51 +08:00
|
|
|
try
|
|
|
|
{
|
|
|
|
// NB: Doesn't increase reference counter (false),
|
|
|
|
// because PyObject already have ownership.
|
|
|
|
// In case exception decrement reference counter.
|
|
|
|
cv::detail::PyObjectHolder args(PyTuple_New(meta.size()), false);
|
2022-09-06 15:52:35 +08:00
|
|
|
unpackMetasToTuple(meta, gargs, args);
|
2022-05-26 00:12:51 +08:00
|
|
|
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
PyObject *py_kernel_state = PyObject_CallObject(setup.get(), args.get());
|
2022-05-26 00:12:51 +08:00
|
|
|
if (PyErr_Occurred())
|
|
|
|
{
|
|
|
|
PyErr_PrintEx(0);
|
|
|
|
PyErr_Clear();
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
throw std::logic_error("Python kernel setup failed with error!");
|
2022-05-26 00:12:51 +08:00
|
|
|
}
|
|
|
|
// NB: In fact it's impossible situation, because errors were handled above.
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
GAPI_Assert(py_kernel_state && "Python kernel setup returned NULL!");
|
2022-05-26 00:12:51 +08:00
|
|
|
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
if (!pyopencv_to(py_kernel_state, state, ArgInfo("arg", false)))
|
2022-05-26 00:12:51 +08:00
|
|
|
{
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
util::throw_error(std::logic_error("Failed to convert python state"));
|
2022-05-26 00:12:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
PyGILState_Release(gstate);
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
return state;
|
2022-05-26 00:12:51 +08:00
|
|
|
}
|
|
|
|
|
2021-03-31 04:59:02 +08:00
|
|
|
static GMetaArg get_meta_arg(PyObject* obj)
|
|
|
|
{
|
2021-08-24 17:37:50 +08:00
|
|
|
cv::GMetaArg arg;
|
|
|
|
if (!pyopencv_to(obj, arg, ArgInfo("arg", false)))
|
2021-03-31 04:59:02 +08:00
|
|
|
{
|
|
|
|
util::throw_error(std::logic_error("Unsupported output meta type"));
|
|
|
|
}
|
2021-08-24 17:37:50 +08:00
|
|
|
return arg;
|
2021-03-31 04:59:02 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static cv::GMetaArgs get_meta_args(PyObject* tuple)
|
|
|
|
{
|
|
|
|
size_t size = PyTuple_Size(tuple);
|
|
|
|
|
|
|
|
cv::GMetaArgs metas;
|
|
|
|
metas.reserve(size);
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
|
|
{
|
|
|
|
metas.push_back(get_meta_arg(PyTuple_GetItem(tuple, i)));
|
|
|
|
}
|
|
|
|
|
|
|
|
return metas;
|
|
|
|
}
|
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
static GMetaArgs run_py_meta(cv::detail::PyObjectHolder out_meta,
|
2022-09-06 15:52:35 +08:00
|
|
|
const cv::GMetaArgs &meta,
|
|
|
|
const cv::GArgs &gargs)
|
2021-07-02 03:06:35 +08:00
|
|
|
{
|
2021-03-31 04:59:02 +08:00
|
|
|
PyGILState_STATE gstate;
|
|
|
|
gstate = PyGILState_Ensure();
|
|
|
|
|
|
|
|
cv::GMetaArgs out_metas;
|
|
|
|
try
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
// NB: Doesn't increase reference counter (false),
|
|
|
|
// because PyObject already have ownership.
|
|
|
|
// In case exception decrement reference counter.
|
|
|
|
cv::detail::PyObjectHolder args(PyTuple_New(meta.size()), false);
|
2022-09-06 15:52:35 +08:00
|
|
|
unpackMetasToTuple(meta, gargs, args);
|
2021-05-21 02:59:53 +08:00
|
|
|
// NB: Doesn't increase reference counter (false).
|
|
|
|
// In case PyObject_CallObject return NULL, do nothing in destructor.
|
|
|
|
cv::detail::PyObjectHolder result(
|
|
|
|
PyObject_CallObject(out_meta.get(), args.get()), false);
|
|
|
|
|
2021-07-02 03:06:35 +08:00
|
|
|
if (PyErr_Occurred())
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_PrintEx(0);
|
|
|
|
PyErr_Clear();
|
|
|
|
throw std::logic_error("Python outMeta failed with error!");
|
|
|
|
}
|
2022-04-14 01:06:37 +08:00
|
|
|
// NB: In fact it's impossible situation, because errors were handled above.
|
2021-05-21 02:59:53 +08:00
|
|
|
GAPI_Assert(result.get() && "Python outMeta returned NULL!");
|
|
|
|
|
|
|
|
out_metas = PyTuple_Check(result.get()) ? get_meta_args(result.get())
|
|
|
|
: cv::GMetaArgs{get_meta_arg(result.get())};
|
2021-03-31 04:59:02 +08:00
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
|
|
|
|
return out_metas;
|
|
|
|
}
|
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
static PyObject* pyopencv_cv_gapi_kernels(PyObject* , PyObject* py_args, PyObject*)
|
|
|
|
{
|
|
|
|
using namespace cv;
|
2021-12-24 23:04:11 +08:00
|
|
|
GKernelPackage pkg;
|
2021-03-26 19:16:26 +08:00
|
|
|
Py_ssize_t size = PyTuple_Size(py_args);
|
2021-05-21 02:59:53 +08:00
|
|
|
|
2021-03-26 19:16:26 +08:00
|
|
|
for (int i = 0; i < size; ++i)
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyObject* user_kernel = PyTuple_GetItem(py_args, i);
|
|
|
|
|
|
|
|
PyObject* id_obj = PyObject_GetAttrString(user_kernel, "id");
|
2021-07-02 03:06:35 +08:00
|
|
|
if (!id_obj)
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError,
|
|
|
|
"Python kernel should contain id, please use cv.gapi.kernel to define kernel");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
PyObject* out_meta = PyObject_GetAttrString(user_kernel, "outMeta");
|
2021-07-02 03:06:35 +08:00
|
|
|
if (!out_meta)
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError,
|
|
|
|
"Python kernel should contain outMeta, please use cv.gapi.kernel to define kernel");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
PyObject* run = PyObject_GetAttrString(user_kernel, "run");
|
2021-07-02 03:06:35 +08:00
|
|
|
if (!run)
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError,
|
|
|
|
"Python kernel should contain run, please use cv.gapi.kernel to define kernel");
|
|
|
|
return NULL;
|
|
|
|
}
|
2022-05-26 00:12:51 +08:00
|
|
|
PyObject* setup = nullptr;
|
|
|
|
if (PyObject_HasAttrString(user_kernel, "setup")) {
|
|
|
|
setup = PyObject_GetAttrString(user_kernel, "setup");
|
|
|
|
}
|
2021-03-26 19:16:26 +08:00
|
|
|
|
|
|
|
std::string id;
|
2021-05-21 02:59:53 +08:00
|
|
|
if (!pyopencv_to(id_obj, id, ArgInfo("id", false)))
|
2021-03-26 19:16:26 +08:00
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
PyErr_SetString(PyExc_TypeError, "Failed to obtain string");
|
2021-03-26 19:16:26 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
2021-05-21 02:59:53 +08:00
|
|
|
|
|
|
|
using namespace std::placeholders;
|
2022-05-26 00:12:51 +08:00
|
|
|
|
|
|
|
if (setup)
|
|
|
|
{
|
|
|
|
gapi::python::GPythonFunctor f(
|
|
|
|
id.c_str(), std::bind(run_py_meta, cv::detail::PyObjectHolder{out_meta}, _1, _2),
|
|
|
|
std::bind(run_py_kernel, cv::detail::PyObjectHolder{run}, _1),
|
Merge pull request #23597 from dmatveev:dm/gapi_onnx_py_integration
G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-30 22:52:17 +08:00
|
|
|
std::bind(run_py_setup, cv::detail::PyObjectHolder{setup}, _1, _2));
|
2022-05-26 00:12:51 +08:00
|
|
|
pkg.include(f);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
gapi::python::GPythonFunctor f(
|
|
|
|
id.c_str(), std::bind(run_py_meta, cv::detail::PyObjectHolder{out_meta}, _1, _2),
|
|
|
|
std::bind(run_py_kernel, cv::detail::PyObjectHolder{run}, _1));
|
|
|
|
pkg.include(f);
|
|
|
|
}
|
2021-03-26 19:16:26 +08:00
|
|
|
}
|
|
|
|
return pyopencv_from(pkg);
|
|
|
|
}
|
|
|
|
|
2021-03-31 04:59:02 +08:00
|
|
|
static PyObject* pyopencv_cv_gapi_op(PyObject* , PyObject* py_args, PyObject*)
|
|
|
|
{
|
|
|
|
using namespace cv;
|
|
|
|
Py_ssize_t size = PyTuple_Size(py_args);
|
|
|
|
std::string id;
|
|
|
|
if (!pyopencv_to(PyTuple_GetItem(py_args, 0), id, ArgInfo("id", false)))
|
|
|
|
{
|
|
|
|
PyErr_SetString(PyExc_TypeError, "Failed to obtain: operation id must be a string");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
PyObject* outMeta = PyTuple_GetItem(py_args, 1);
|
|
|
|
|
|
|
|
cv::GArgs args;
|
|
|
|
for (int i = 2; i < size; i++)
|
|
|
|
{
|
|
|
|
PyObject* item = PyTuple_GetItem(py_args, i);
|
|
|
|
if (PyObject_TypeCheck(item,
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_GMat_TypePtr)))
|
|
|
|
{
|
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GMat_t*>(item)->v);
|
|
|
|
}
|
|
|
|
else if (PyObject_TypeCheck(item,
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_GScalar_TypePtr)))
|
|
|
|
{
|
|
|
|
args.emplace_back(reinterpret_cast<pyopencv_GScalar_t*>(item)->v);
|
|
|
|
}
|
|
|
|
else if (PyObject_TypeCheck(item,
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_GOpaqueT_TypePtr)))
|
|
|
|
{
|
|
|
|
auto&& arg = reinterpret_cast<pyopencv_GOpaqueT_t*>(item)->v.arg();
|
|
|
|
#define HC(T, K) case cv::GOpaqueT::Storage:: index_of<cv::GOpaque<T>>(): \
|
|
|
|
args.emplace_back(cv::util::get<cv::GOpaque<T>>(arg)); \
|
|
|
|
break; \
|
|
|
|
|
|
|
|
SWITCH(arg.index(), GOPAQUE_TYPE_LIST_G, HC)
|
|
|
|
#undef HC
|
|
|
|
}
|
|
|
|
else if (PyObject_TypeCheck(item,
|
|
|
|
reinterpret_cast<PyTypeObject*>(pyopencv_GArrayT_TypePtr)))
|
|
|
|
{
|
|
|
|
auto&& arg = reinterpret_cast<pyopencv_GArrayT_t*>(item)->v.arg();
|
|
|
|
#define HC(T, K) case cv::GArrayT::Storage:: index_of<cv::GArray<T>>(): \
|
|
|
|
args.emplace_back(cv::util::get<cv::GArray<T>>(arg)); \
|
|
|
|
break; \
|
|
|
|
|
|
|
|
SWITCH(arg.index(), GARRAY_TYPE_LIST_G, HC)
|
|
|
|
#undef HC
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2021-05-21 02:59:53 +08:00
|
|
|
args.emplace_back(cv::GArg(cv::detail::PyObjectHolder{item}));
|
2021-03-31 04:59:02 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
cv::GKernel::M outMetaWrapper = std::bind(run_py_meta,
|
|
|
|
cv::detail::PyObjectHolder{outMeta},
|
2021-03-31 04:59:02 +08:00
|
|
|
std::placeholders::_1,
|
|
|
|
std::placeholders::_2);
|
|
|
|
return pyopencv_from(cv::gapi::wip::op(id, outMetaWrapper, std::move(args)));
|
|
|
|
}
|
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
template<>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::detail::ExtractArgsCallback& value, const ArgInfo&)
|
2021-03-01 23:52:11 +08:00
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
cv::detail::PyObjectHolder holder{obj};
|
|
|
|
value = cv::detail::ExtractArgsCallback{[=](const cv::GTypesInfo& info)
|
|
|
|
{
|
|
|
|
PyGILState_STATE gstate;
|
|
|
|
gstate = PyGILState_Ensure();
|
2021-03-01 23:52:11 +08:00
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
cv::GRunArgs args;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
args = extract_run_args(info, holder.get());
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
PyGILState_Release(gstate);
|
2021-06-30 17:04:09 +08:00
|
|
|
throw;
|
|
|
|
}
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
return args;
|
|
|
|
}};
|
|
|
|
return true;
|
2021-03-01 23:52:11 +08:00
|
|
|
}
|
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
template<>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::detail::ExtractMetaCallback& value, const ArgInfo&)
|
2021-03-01 23:52:11 +08:00
|
|
|
{
|
2021-06-30 17:04:09 +08:00
|
|
|
cv::detail::PyObjectHolder holder{obj};
|
|
|
|
value = cv::detail::ExtractMetaCallback{[=](const cv::GTypesInfo& info)
|
|
|
|
{
|
|
|
|
PyGILState_STATE gstate;
|
|
|
|
gstate = PyGILState_Ensure();
|
2021-03-01 23:52:11 +08:00
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
cv::GMetaArgs args;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
args = extract_meta_args(info, holder.get());
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
PyGILState_Release(gstate);
|
2021-06-30 17:04:09 +08:00
|
|
|
throw;
|
|
|
|
}
|
|
|
|
PyGILState_Release(gstate);
|
|
|
|
return args;
|
|
|
|
}};
|
|
|
|
return true;
|
2021-03-01 23:52:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
struct PyOpenCV_Converter<cv::GArray<T>>
|
|
|
|
{
|
|
|
|
static PyObject* from(const cv::GArray<T>& p)
|
|
|
|
{
|
|
|
|
return pyopencv_from(cv::GArrayT(p));
|
|
|
|
}
|
|
|
|
static bool to(PyObject *obj, cv::GArray<T>& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
if (PyObject_TypeCheck(obj, reinterpret_cast<PyTypeObject*>(pyopencv_GArrayT_TypePtr)))
|
|
|
|
{
|
|
|
|
auto& array = reinterpret_cast<pyopencv_GArrayT_t*>(obj)->v;
|
2021-07-02 03:06:35 +08:00
|
|
|
try
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
value = cv::util::get<cv::GArray<T>>(array.arg());
|
2021-07-02 03:06:35 +08:00
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
struct PyOpenCV_Converter<cv::GOpaque<T>>
|
|
|
|
{
|
|
|
|
static PyObject* from(const cv::GOpaque<T>& p)
|
|
|
|
{
|
|
|
|
return pyopencv_from(cv::GOpaqueT(p));
|
|
|
|
}
|
|
|
|
static bool to(PyObject *obj, cv::GOpaque<T>& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
if (PyObject_TypeCheck(obj, reinterpret_cast<PyTypeObject*>(pyopencv_GOpaqueT_TypePtr)))
|
|
|
|
{
|
|
|
|
auto& opaque = reinterpret_cast<pyopencv_GOpaqueT_t*>(obj)->v;
|
2021-07-02 03:06:35 +08:00
|
|
|
try
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
value = cv::util::get<cv::GOpaque<T>>(opaque.arg());
|
2021-07-02 03:06:35 +08:00
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
2021-03-01 23:52:11 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-06-30 17:04:09 +08:00
|
|
|
template<>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::GProtoInputArgs& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
value = extract_proto_args<cv::GProtoInputArgs>(obj);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
failmsg("Can't parse cv::GProtoInputArgs");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<>
|
|
|
|
bool pyopencv_to(PyObject* obj, cv::GProtoOutputArgs& value, const ArgInfo& info)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
value = extract_proto_args<cv::GProtoOutputArgs>(obj);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
catch (...)
|
|
|
|
{
|
|
|
|
failmsg("Can't parse cv::GProtoOutputArgs");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2021-04-01 04:34:04 +08:00
|
|
|
|
2021-05-21 02:59:53 +08:00
|
|
|
// extend cv.gapi methods
|
|
|
|
#define PYOPENCV_EXTRA_METHODS_GAPI \
|
2021-04-01 04:34:04 +08:00
|
|
|
{"kernels", CV_PY_FN_WITH_KW(pyopencv_cv_gapi_kernels), "kernels(...) -> GKernelPackage"}, \
|
2021-05-21 02:59:53 +08:00
|
|
|
{"__op", CV_PY_FN_WITH_KW(pyopencv_cv_gapi_op), "__op(...) -> retval\n"},
|
2021-04-01 04:34:04 +08:00
|
|
|
|
|
|
|
|
2020-09-29 18:45:40 +08:00
|
|
|
#endif // HAVE_OPENCV_GAPI
|
|
|
|
#endif // OPENCV_GAPI_PYOPENCV_GAPI_HPP
|