opencv/modules/softcascade/doc/softcascade_training.rst

143 lines
3.6 KiB
ReStructuredText
Raw Normal View History

Soft Cascade Training
=======================
.. highlight:: cpp
Soft Cascade Detector Training
--------------------------------------------
2013-02-01 18:25:10 +08:00
Octave
-----------------
2013-02-01 18:25:10 +08:00
.. ocv:class:: Octave
2013-01-30 15:24:45 +08:00
Public interface for soft cascade training algorithm. ::
2013-02-01 18:25:10 +08:00
class CV_EXPORTS Octave : public Algorithm
{
public:
enum {
// Direct backward pruning. (Cha Zhang and Paul Viola)
DBP = 1,
// Multiple instance pruning. (Cha Zhang and Paul Viola)
MIP = 2,
// Originally proposed by L. Bourdev and J. Brandt
HEURISTIC = 4 };
2013-02-01 18:25:10 +08:00
virtual ~Octave();
static cv::Ptr<Octave> create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
virtual void setRejectThresholds(OutputArray thresholds) = 0;
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0;
virtual void write( CvFileStorage* fs, string name) const = 0;
};
2013-02-01 18:25:10 +08:00
Octave::~Octave
---------------------------------------
2013-02-01 18:25:10 +08:00
Destructor for Octave.
2013-02-01 18:25:10 +08:00
.. ocv:function:: Octave::~Octave()
2013-02-01 18:25:10 +08:00
Octave::train
------------------------
2013-02-01 18:25:10 +08:00
.. ocv:function:: bool Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
:param dataset an object that allows communicate for training set.
:param pool an object that presents feature pool.
:param weaks a number of weak trees should be trained.
:param treeDepth a depth of resulting weak trees.
2013-02-01 18:25:10 +08:00
Octave::setRejectThresholds
--------------------------------------
2013-02-01 18:25:10 +08:00
.. ocv:function:: void Octave::setRejectThresholds(OutputArray thresholds)
:param thresholds an output array of resulted rejection vector. Have same size as number of trained stages.
2013-02-01 18:25:10 +08:00
Octave::write
------------------------
2013-02-01 18:25:10 +08:00
.. ocv:function:: void Octave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
.. ocv:function:: void Octave::train( CvFileStorage* fs, string name) const
:param fs an output file storage to store trained detector.
:param pool an object that presents feature pool.
:param dataset a rejection vector that should be included in detector xml file.
:param name a name of root node for trained detector.
2013-01-30 15:24:45 +08:00
FeaturePool
-----------
.. ocv:class:: FeaturePool
Public interface for feature pool. This is a hight level abstraction for training random feature pool. ::
class CV_EXPORTS FeaturePool
{
public:
virtual int size() const = 0;
virtual float apply(int fi, int si, const Mat& channels) const = 0;
virtual void write( cv::FileStorage& fs, int index) const = 0;
virtual ~FeaturePool();
};
FeaturePool::size
-----------------
Returns size of feature pool.
.. ocv:function:: int FeaturePool::size() const
FeaturePool::~FeaturePool
-------------------------
FeaturePool destructor.
.. ocv:function:: int FeaturePool::~FeaturePool()
FeaturePool::write
------------------
Write specified feature from feature pool to file storage.
.. ocv:function:: void FeaturePool::write( cv::FileStorage& fs, int index) const
:param fs an output file storage to store feature.
:param index an index of feature that should be stored.
FeaturePool::apply
------------------
Compute feature on integral channel image.
.. ocv:function:: float FeaturePool::apply(int fi, int si, const Mat& channels) const
:param fi an index of feature that should be computed.
:param si an index of sample.
:param fs a channel matrix.