opencv/modules/ocl/src/interpolate_frames.cpp

316 lines
13 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Comuter Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular urpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::ocl;
#if !defined (HAVE_OPENCL)
void cv::ocl::interpolateFrames(const oclMat &frame0, const oclMat &frame1,
const oclMat &fu, const oclMat &fv,
const oclMat &bu, const oclMat &bv,
float pos, oclMat &newFrame, oclMat &buf)
{
throw_nogpu();
}
#else
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *interpolate_frames;
namespace interpolate
{
//The following are ported from NPP_staging.cu
// As it is not valid to do pointer offset operations on host for default oclMat's native cl_mem pointer,
// we may have to do this on kernel
void memsetKernel(float val, oclMat &img, int height, int offset);
void normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset);
void forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale,
int b_offset, int d_offset); // buffer, dst offset
//OpenCL conversion of nppiStVectorWarp_PSF2x2_32f_C1
void vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v,
oclMat &buffer, int buf_offset, float timeScale, int dst_offset);
//OpenCL conversion of BlendFrames
void blendFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &buffer,
float pos, oclMat &newFrame, cl_mem &, cl_mem &);
// bind a buffer to an image
void bindImgTex(const oclMat &img, cl_mem &tex);
}
}
}
void cv::ocl::interpolateFrames(const oclMat &frame0, const oclMat &frame1,
const oclMat &fu, const oclMat &fv,
const oclMat &bu, const oclMat &bv,
float pos, oclMat &newFrame, oclMat &buf)
{
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());
newFrame.create(frame0.size(), frame0.type());
buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
buf.setTo(Scalar::all(0));
size_t step = frame0.step;
CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);
cl_mem tex_src0 = 0, tex_src1 = 0;
// warp flow
using namespace interpolate;
bindImgTex(frame0, tex_src0);
bindImgTex(frame1, tex_src1);
// CUDA Offsets
enum
{
cov0 = 0,
cov1,
fwdU,
fwdV,
bwdU,
bwdV
};
vectorWarp(fu, fu, fv, buf, cov0, pos, fwdU);
vectorWarp(fv, fu, fv, buf, cov0, pos, fwdV);
vectorWarp(bu, bu, bv, buf, cov1, 1.0f - pos, bwdU);
vectorWarp(bv, bu, bv, buf, cov1, 1.0f - pos, bwdU);
blendFrames(frame0, frame1, buf, pos, newFrame, tex_src0, tex_src1);
openCLFree(tex_src0);
openCLFree(tex_src1);
}
void interpolate::memsetKernel(float val, oclMat &img, int height, int offset)
{
Context *clCxt = Context::getContext();
string kernelName = "memsetKernel";
vector< pair<size_t, const void *> > args;
int step = img.step / sizeof(float);
offset = step * height * offset;
args.push_back( make_pair( sizeof(cl_float), (void *)&val));
args.push_back( make_pair( sizeof(cl_mem), (void *)&img.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&img.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&height));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_int), (void *)&offset));
size_t globalThreads[3] = {img.cols, height, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset)
{
Context *clCxt = Context::getContext();
string kernelName = "normalizeKernel";
vector< pair<size_t, const void *> > args;
int step = buffer.step / sizeof(float);
factor_offset = step * height * factor_offset;
dst_offset = step * height * dst_offset;
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&buffer.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&height));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_int), (void *)&factor_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset));
size_t globalThreads[3] = {buffer.cols, height, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale,
int b_offset, int d_offset)
{
Context *clCxt = Context::getContext();
string kernelName = "forwardWarpKernel";
vector< pair<size_t, const void *> > args;
int f_step = u.step / sizeof(float); // flow step
int b_step = buffer.step / sizeof(float);
b_offset = b_step * src.rows * b_offset;
d_offset = b_step * src.rows * d_offset;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&u.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&v.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&f_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&b_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&b_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&d_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&time_scale));
size_t globalThreads[3] = {src.cols, src.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v,
oclMat &buffer, int b_offset, float timeScale, int d_offset)
{
memsetKernel(0, buffer, src.rows, b_offset);
forwardWarpKernel(src, buffer, u, v, timeScale, b_offset, d_offset);
normalizeKernel(buffer, src.rows, b_offset, d_offset);
}
void interpolate::blendFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &buffer, float pos, oclMat &newFrame, cl_mem &tex_src0, cl_mem &tex_src1)
{
int step = buffer.step / sizeof(float);
Context *clCxt = Context::getContext();
string kernelName = "blendFramesKernel";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src0));
args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src1));
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&newFrame.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_float), (void *)&pos));
size_t globalThreads[3] = {frame0.cols, frame0.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::bindImgTex(const oclMat &img, cl_mem &texture)
{
cl_image_format format;
int err;
int depth = img.depth();
int channels = img.channels();
switch(depth)
{
case CV_8U:
format.image_channel_data_type = CL_UNSIGNED_INT8;
break;
case CV_32S:
format.image_channel_data_type = CL_UNSIGNED_INT32;
break;
case CV_32F:
format.image_channel_data_type = CL_FLOAT;
break;
default:
throw std::exception();
break;
}
switch(channels)
{
case 1:
format.image_channel_order = CL_R;
break;
case 3:
format.image_channel_order = CL_RGB;
break;
case 4:
format.image_channel_order = CL_RGBA;
break;
default:
throw std::exception();
break;
}
if(texture)
{
openCLFree(texture);
}
#if CL_VERSION_1_2
cl_image_desc desc;
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = img.step / img.elemSize();
desc.image_height = img.rows;
desc.image_depth = 0;
desc.image_array_size = 1;
desc.image_row_pitch = 0;
desc.image_slice_pitch = 0;
desc.buffer = NULL;
desc.num_mip_levels = 0;
desc.num_samples = 0;
texture = clCreateImage(Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
#else
texture = clCreateImage2D(
Context::getContext()->impl->clContext,
CL_MEM_READ_WRITE,
&format,
img.step / img.elemSize(),
img.rows,
0,
NULL,
&err);
#endif
size_t origin[] = { 0, 0, 0 };
size_t region[] = { img.step / img.elemSize(), img.rows, 1 };
clEnqueueCopyBufferToImage(img.clCxt->impl->clCmdQueue, (cl_mem)img.data, texture, 0, origin, region, 0, NULL, 0);
openCLSafeCall(err);
}
#endif//(HAVE_OPENCL)