2024-02-29 16:42:19 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2024, OpenCV Team, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int>> Layer_1d_Test;
|
|
|
|
TEST_P(Layer_1d_Test, Scale)
|
|
|
|
{
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scale";
|
|
|
|
lp.name = "scaleLayer";
|
|
|
|
lp.set("axis", 0);
|
|
|
|
lp.set("mode", "scale");
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
Ptr<ScaleLayer> layer = ScaleLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 3};
|
|
|
|
std::vector<int> output_shape = {batch_size, 3};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
cv::Mat weight = cv::Mat(output_shape, CV_32F, 2.0);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input, weight};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
cv::Mat output_ref = input.mul(weight);
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int>> Layer_Gather_1d_Test;
|
|
|
|
TEST_P(Layer_Gather_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Gather";
|
|
|
|
lp.name = "gatherLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
lp.set("real_ndims", 1);
|
|
|
|
|
|
|
|
Ptr<GatherLayer> layer = GatherLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
std::vector<int> indices_shape = {1, 1};
|
|
|
|
std::vector<int> output_shape = {batch_size, 1};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
indices_shape.erase(indices_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
} else if (axis == 0) {
|
|
|
|
output_shape[0] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randu(input, 0.0, 1.0);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
cv::Mat indices = cv::Mat(indices_shape, CV_32S, 0.0);
|
2024-02-29 16:42:19 +08:00
|
|
|
cv::Mat output_ref = cv::Mat(output_shape, CV_32F, input(cv::Range::all(), cv::Range(0, 1)).data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input, indices};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Gather_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values(0, 1)
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int, std::string>> Layer_Arg_1d_Test;
|
|
|
|
TEST_P(Layer_Arg_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
std::string operation = get<2>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Arg";
|
|
|
|
lp.name = "arg" + operation + "_Layer";
|
|
|
|
lp.set("op", operation);
|
|
|
|
lp.set("axis", axis);
|
|
|
|
lp.set("keepdims", 1);
|
|
|
|
lp.set("select_last_index", 0);
|
|
|
|
|
|
|
|
Ptr<ArgLayer> layer = ArgLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
std::vector<int> output_shape = {1, 1};
|
|
|
|
|
|
|
|
if (batch_size == 0){
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
output_shape.erase(output_shape.begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (axis != 0 && batch_size != 0){
|
|
|
|
output_shape[0] = batch_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape, CV_32F, 1);
|
|
|
|
cv::Mat output_ref = cv::Mat(output_shape, CV_32F, 0);
|
|
|
|
|
|
|
|
for (int i = 0; i < batch_size; ++i)
|
|
|
|
input.at<float>(i, 0) = static_cast<float>(i + 1);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Arg_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values(0, 1),
|
|
|
|
/*operation*/ Values( "max", "min")
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, std::string>> Layer_NaryElemwise_1d_Test;
|
|
|
|
TEST_P(Layer_NaryElemwise_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = operation + "_Layer";
|
|
|
|
lp.set("operation", operation);
|
|
|
|
Ptr<NaryEltwiseLayer> layer = NaryEltwiseLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
if (batch_size == 0)
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
|
|
|
|
cv::Mat input1 = cv::Mat(input_shape, CV_32F, 0.0);
|
|
|
|
cv::Mat input2 = cv::Mat(input_shape, CV_32F, 0.0);
|
|
|
|
cv::randu(input1, 0.0, 1.0);
|
|
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
|
|
|
|
cv::Mat output_ref;
|
|
|
|
if (operation == "sum") {
|
|
|
|
output_ref = input1 + input2;
|
|
|
|
} else if (operation == "mul") {
|
|
|
|
output_ref = input1.mul(input2);
|
|
|
|
} else if (operation == "div") {
|
|
|
|
output_ref = input1 / input2;
|
|
|
|
} else if (operation == "sub") {
|
|
|
|
output_ref = input1 - input2;
|
|
|
|
} else {
|
|
|
|
output_ref = cv::Mat();
|
|
|
|
}
|
|
|
|
std::vector<Mat> inputs{input1, input2};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
if (!output_ref.empty()) {
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
} else {
|
|
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_NaryElemwise_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1),
|
|
|
|
/*operation*/ Values("div", "mul", "sum", "sub")
|
|
|
|
));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, std::string>> Layer_Elemwise_1d_Test;
|
|
|
|
TEST_P(Layer_Elemwise_1d_Test, Accuracy) {
|
|
|
|
|
|
|
|
int batch_size = get<0>(GetParam());
|
|
|
|
std::string operation = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
lp.name = operation + "_Layer";
|
|
|
|
lp.set("operation", operation);
|
|
|
|
Ptr<EltwiseLayer> layer = EltwiseLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {batch_size, 1};
|
|
|
|
if (batch_size == 0)
|
|
|
|
input_shape.erase(input_shape.begin());
|
|
|
|
|
|
|
|
cv::Mat input1 = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::Mat input2 = cv::Mat(input_shape, CV_32F, 1.0);
|
|
|
|
cv::randu(input1, 0.0, 1.0);
|
|
|
|
cv::randu(input2, 0.0, 1.0);
|
|
|
|
|
|
|
|
// Dynamically select the operation
|
|
|
|
cv::Mat output_ref;
|
|
|
|
if (operation == "sum") {
|
|
|
|
output_ref = input1 + input2;
|
|
|
|
} else if (operation == "max") {
|
|
|
|
output_ref = cv::max(input1, input2);
|
|
|
|
} else if (operation == "min") {
|
|
|
|
output_ref = cv::min(input1, input2);
|
|
|
|
} else if (operation == "prod") {
|
|
|
|
output_ref = input1.mul(input2);
|
|
|
|
} else if (operation == "div") {
|
|
|
|
output_ref = input1 / input2;
|
|
|
|
} else {
|
|
|
|
output_ref = cv::Mat();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input1, input2};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
|
|
|
|
if (!output_ref.empty()) {
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
} else {
|
|
|
|
CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Elemwise_1d_Test, Combine(
|
|
|
|
/*input blob shape*/ Values(0, 1, 2, 3),
|
|
|
|
/*operation*/ Values("div", "prod", "max", "min", "sum")
|
|
|
|
));
|
|
|
|
|
2024-03-22 08:59:08 +08:00
|
|
|
TEST(Layer_Reshape_Test, Accuracy)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Reshape";
|
|
|
|
lp.name = "ReshapeLayer";
|
|
|
|
lp.set("axis", 0); // Set axis to 0 to start reshaping from the first dimension
|
|
|
|
lp.set("num_axes", -1); // Set num_axes to -1 to indicate all following axes are included in the reshape
|
|
|
|
int newShape[] = {1};
|
|
|
|
lp.set("dim", DictValue::arrayInt(newShape, 1));
|
|
|
|
|
|
|
|
Ptr<ReshapeLayer> layer = ReshapeLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = {0};
|
|
|
|
|
|
|
|
Mat input(0, input_shape.data(), CV_32F);
|
|
|
|
randn(input, 0.0, 1.0);
|
|
|
|
Mat output_ref(1, newShape, CV_32F, input.data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
2024-03-26 20:13:41 +08:00
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Split_Test;
|
|
|
|
TEST_P(Layer_Split_Test, Accuracy_01D)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Split";
|
|
|
|
lp.name = "SplitLayer";
|
|
|
|
int top_count = 2; // 2 is for simplicity
|
|
|
|
lp.set("top_count", top_count);
|
|
|
|
Ptr<SplitLayer> layer = SplitLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = std::get<0>(GetParam());
|
|
|
|
|
|
|
|
Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
|
|
|
|
Mat output_ref = Mat(input_shape.size(), input_shape.data(), CV_32F, input.data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
for (int i = 0; i < top_count; i++)
|
|
|
|
{
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[i]));
|
|
|
|
normAssert(output_ref, outputs[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_Split_Test,
|
|
|
|
testing::Values(
|
|
|
|
std::vector<int>({}),
|
|
|
|
std::vector<int>({1}),
|
|
|
|
std::vector<int>({1, 4}),
|
|
|
|
std::vector<int>({1, 5}),
|
|
|
|
std::vector<int>({4, 1}),
|
|
|
|
std::vector<int>({4, 5})
|
|
|
|
));
|
|
|
|
|
2024-04-01 21:11:10 +08:00
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::vector<int>>> Layer_Expand_Test;
|
|
|
|
TEST_P(Layer_Expand_Test, Accuracy_ND) {
|
|
|
|
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
std::vector<int> target_shape = get<1>(GetParam());
|
|
|
|
if (input_shape.size() >= target_shape.size()) // Skip if input shape is already larger than target shape
|
|
|
|
return;
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Expand";
|
|
|
|
lp.name = "ExpandLayer";
|
|
|
|
lp.set("shape", DictValue::arrayInt(&target_shape[0], target_shape.size()));
|
|
|
|
|
|
|
|
Ptr<ExpandLayer> layer = ExpandLayer::create(lp);
|
|
|
|
Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
|
|
|
|
cv::Mat output_ref(target_shape, CV_32F, input.data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Expand_Test, Combine(
|
|
|
|
/*input blob shape*/ testing::Values(
|
|
|
|
std::vector<int>({}),
|
|
|
|
std::vector<int>({1}),
|
|
|
|
std::vector<int>({1, 1}),
|
|
|
|
std::vector<int>({1, 1, 1})
|
|
|
|
),
|
|
|
|
/*output blob shape*/ testing::Values(
|
|
|
|
std::vector<int>({1}),
|
|
|
|
std::vector<int>({1, 1}),
|
|
|
|
std::vector<int>({1, 1, 1}),
|
|
|
|
std::vector<int>({1, 1, 1, 1})
|
|
|
|
)
|
|
|
|
));
|
|
|
|
|
2024-04-04 15:36:00 +08:00
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_Concat_Test;
|
|
|
|
TEST_P(Layer_Concat_Test, Accuracy_01D)
|
|
|
|
{
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Concat";
|
|
|
|
lp.name = "ConcatLayer";
|
|
|
|
lp.set("axis", 0);
|
|
|
|
|
|
|
|
Ptr<ConcatLayer> layer = ConcatLayer::create(lp);
|
|
|
|
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
std::vector<int> output_shape = {3};
|
|
|
|
|
|
|
|
Mat input1(input_shape.size(), input_shape.data(), CV_32F, 1.0);
|
|
|
|
Mat input2(input_shape.size(), input_shape.data(), CV_32F, 2.0);
|
|
|
|
Mat input3(input_shape.size(), input_shape.data(), CV_32F, 3.0);
|
|
|
|
|
|
|
|
float data[] = {1.0, 2.0, 3.0};
|
|
|
|
Mat output_ref(output_shape, CV_32F, data);
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input1, input2, input3};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Concat_Test,
|
|
|
|
/*input blob shape*/ testing::Values(
|
|
|
|
std::vector<int>({}),
|
|
|
|
std::vector<int>({1})
|
|
|
|
));
|
2024-04-03 16:39:25 +08:00
|
|
|
|
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, int>> Layer_Softmax_Test;
|
|
|
|
TEST_P(Layer_Softmax_Test, Accuracy_01D) {
|
|
|
|
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
if ((input_shape.size() == 0 && axis == 1) ||
|
|
|
|
(!input_shape.empty() && input_shape.size() == 2 && input_shape[0] > 1 && axis == 1) ||
|
|
|
|
(!input_shape.empty() && input_shape[0] > 1 && axis == 0)) // skip since not valid case
|
|
|
|
return;
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Softmax";
|
|
|
|
lp.name = "softmaxLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
Ptr<SoftmaxLayer> layer = SoftmaxLayer::create(lp);
|
|
|
|
|
|
|
|
Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
|
|
|
|
Mat output_ref;
|
|
|
|
cv::exp(input, output_ref);
|
|
|
|
if (axis == 1){
|
|
|
|
cv::divide(output_ref, cv::sum(output_ref), output_ref);
|
|
|
|
} else {
|
|
|
|
cv::divide(output_ref, output_ref, output_ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
normAssert(output_ref, outputs[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Softmax_Test, Combine(
|
|
|
|
/*input blob shape*/
|
|
|
|
testing::Values(
|
|
|
|
std::vector<int>({}),
|
|
|
|
std::vector<int>({1}),
|
|
|
|
std::vector<int>({4}),
|
|
|
|
std::vector<int>({1, 4}),
|
|
|
|
std::vector<int>({4, 1})
|
|
|
|
),
|
|
|
|
/*Axis */
|
|
|
|
testing::Values(0, 1)
|
|
|
|
));
|
|
|
|
|
2024-04-05 20:55:23 +08:00
|
|
|
typedef testing::TestWithParam<tuple<std::vector<int>, std::string>> Layer_Scatter_Test;
|
|
|
|
TEST_P(Layer_Scatter_Test, Accuracy1D) {
|
|
|
|
|
|
|
|
std::vector<int> input_shape = get<0>(GetParam());
|
|
|
|
std::string opr = get<1>(GetParam());
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scatter";
|
|
|
|
lp.name = "addLayer";
|
|
|
|
lp.set("axis", 0);
|
|
|
|
lp.set("reduction", opr);
|
|
|
|
Ptr<ScatterLayer> layer = ScatterLayer::create(lp);
|
|
|
|
|
|
|
|
cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F);
|
|
|
|
cv::randn(input, 0.0, 1.0);
|
|
|
|
|
|
|
|
int indices[] = {3, 2, 1, 0};
|
|
|
|
cv::Mat indices_mat(input_shape.size(), input_shape.data(), CV_32S, indices);
|
|
|
|
cv::Mat output(input_shape.size(), input_shape.data(), CV_32F, 0.0);
|
|
|
|
|
|
|
|
// create reference output
|
|
|
|
cv::Mat output_ref(input_shape, CV_32F, 0.0);
|
|
|
|
for (int i = 0; i < input_shape[0]; i++){
|
|
|
|
output_ref.at<float>(indices[i]) = input.at<float>(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (opr == "add"){
|
|
|
|
output_ref += output;
|
|
|
|
} else if (opr == "mul"){
|
|
|
|
output_ref = output.mul(output_ref);
|
|
|
|
} else if (opr == "max"){
|
|
|
|
cv::max(output_ref, output, output_ref);
|
|
|
|
} else if (opr == "min"){
|
|
|
|
cv::min(output_ref, output, output_ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Mat> inputs{output, indices_mat, input};
|
|
|
|
std::vector<Mat> outputs;
|
|
|
|
runLayer(layer, inputs, outputs);
|
|
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
|
|
ASSERT_EQ(shape(output_ref), shape(outputs[0]));
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Scatter_Test, Combine(
|
|
|
|
/*input blob shape*/ testing::Values(std::vector<int>{4},
|
|
|
|
std::vector<int>{1, 4}),
|
|
|
|
/*reduce*/ Values("none", "add", "mul", "max", "min")
|
|
|
|
));
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-02-29 16:42:19 +08:00
|
|
|
}}
|