2010-05-12 01:44:00 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* K-Nearest Neighbors Classifier *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
// k Nearest Neighbors
|
|
|
|
CvKNearest::CvKNearest()
|
|
|
|
{
|
|
|
|
samples = 0;
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvKNearest::~CvKNearest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvKNearest::CvKNearest( const CvMat* _train_data, const CvMat* _responses,
|
|
|
|
const CvMat* _sample_idx, bool _is_regression, int _max_k )
|
|
|
|
{
|
|
|
|
samples = 0;
|
|
|
|
train( _train_data, _responses, _sample_idx, _is_regression, _max_k, false );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvKNearest::clear()
|
|
|
|
{
|
|
|
|
while( samples )
|
|
|
|
{
|
|
|
|
CvVectors* next_samples = samples->next;
|
|
|
|
cvFree( &samples->data.fl );
|
|
|
|
cvFree( &samples );
|
|
|
|
samples = next_samples;
|
|
|
|
}
|
|
|
|
var_count = 0;
|
|
|
|
total = 0;
|
|
|
|
max_k = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvKNearest::get_max_k() const { return max_k; }
|
|
|
|
|
|
|
|
int CvKNearest::get_var_count() const { return var_count; }
|
|
|
|
|
|
|
|
bool CvKNearest::is_regression() const { return regression; }
|
|
|
|
|
|
|
|
int CvKNearest::get_sample_count() const { return total; }
|
|
|
|
|
|
|
|
bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses,
|
|
|
|
const CvMat* _sample_idx, bool _is_regression,
|
|
|
|
int _max_k, bool _update_base )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
CvMat* responses = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvKNearest::train" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
CvVectors* _samples;
|
|
|
|
float** _data;
|
|
|
|
int _count, _dims, _dims_all, _rsize;
|
|
|
|
|
|
|
|
if( !_update_base )
|
|
|
|
clear();
|
|
|
|
|
|
|
|
// Prepare training data and related parameters.
|
|
|
|
// Treat categorical responses as ordered - to prevent class label compression and
|
|
|
|
// to enable entering new classes in the updates
|
|
|
|
CV_CALL( cvPrepareTrainData( "CvKNearest::train", _train_data, CV_ROW_SAMPLE,
|
|
|
|
_responses, CV_VAR_ORDERED, 0, _sample_idx, true, (const float***)&_data,
|
|
|
|
&_count, &_dims, &_dims_all, &responses, 0, 0 ));
|
|
|
|
|
|
|
|
if( _update_base && _dims != var_count )
|
|
|
|
CV_ERROR( CV_StsBadArg, "The newly added data have different dimensionality" );
|
|
|
|
|
|
|
|
if( !_update_base )
|
|
|
|
{
|
|
|
|
if( _max_k < 1 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "max_k must be a positive number" );
|
|
|
|
|
|
|
|
regression = _is_regression;
|
|
|
|
var_count = _dims;
|
|
|
|
max_k = _max_k;
|
|
|
|
}
|
|
|
|
|
|
|
|
_rsize = _count*sizeof(float);
|
|
|
|
CV_CALL( _samples = (CvVectors*)cvAlloc( sizeof(*_samples) + _rsize ));
|
|
|
|
_samples->next = samples;
|
|
|
|
_samples->type = CV_32F;
|
|
|
|
_samples->data.fl = _data;
|
|
|
|
_samples->count = _count;
|
|
|
|
total += _count;
|
|
|
|
|
|
|
|
samples = _samples;
|
|
|
|
memcpy( _samples + 1, responses->data.fl, _rsize );
|
|
|
|
|
|
|
|
ok = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CvKNearest::find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
|
|
|
|
float* neighbor_responses, const float** neighbors, float* dist ) const
|
|
|
|
{
|
|
|
|
int i, j, count = end - start, k1 = 0, k2 = 0, d = var_count;
|
|
|
|
CvVectors* s = samples;
|
|
|
|
|
|
|
|
for( ; s != 0; s = s->next )
|
|
|
|
{
|
|
|
|
int n = s->count;
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
for( i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
double sum = 0;
|
|
|
|
Cv32suf si;
|
|
|
|
const float* v = s->data.fl[j];
|
|
|
|
const float* u = (float*)(_samples->data.ptr + _samples->step*(start + i));
|
|
|
|
Cv32suf* dd = (Cv32suf*)(dist + i*k);
|
|
|
|
float* nr;
|
|
|
|
const float** nn;
|
|
|
|
int t, ii, ii1;
|
|
|
|
|
|
|
|
for( t = 0; t <= d - 4; t += 4 )
|
|
|
|
{
|
|
|
|
double t0 = u[t] - v[t], t1 = u[t+1] - v[t+1];
|
|
|
|
double t2 = u[t+2] - v[t+2], t3 = u[t+3] - v[t+3];
|
|
|
|
sum += t0*t0 + t1*t1 + t2*t2 + t3*t3;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; t < d; t++ )
|
|
|
|
{
|
|
|
|
double t0 = u[t] - v[t];
|
|
|
|
sum += t0*t0;
|
|
|
|
}
|
|
|
|
|
|
|
|
si.f = (float)sum;
|
|
|
|
for( ii = k1-1; ii >= 0; ii-- )
|
|
|
|
if( si.i > dd[ii].i )
|
|
|
|
break;
|
|
|
|
if( ii >= k-1 )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
nr = neighbor_responses + i*k;
|
|
|
|
nn = neighbors ? neighbors + (start + i)*k : 0;
|
|
|
|
for( ii1 = k2 - 1; ii1 > ii; ii1-- )
|
|
|
|
{
|
|
|
|
dd[ii1+1].i = dd[ii1].i;
|
|
|
|
nr[ii1+1] = nr[ii1];
|
|
|
|
if( nn ) nn[ii1+1] = nn[ii1];
|
|
|
|
}
|
|
|
|
dd[ii+1].i = si.i;
|
|
|
|
nr[ii+1] = ((float*)(s + 1))[j];
|
|
|
|
if( nn )
|
|
|
|
nn[ii+1] = v;
|
|
|
|
}
|
|
|
|
k1 = MIN( k1+1, k );
|
|
|
|
k2 = MIN( k1, k-1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float CvKNearest::write_results( int k, int k1, int start, int end,
|
|
|
|
const float* neighbor_responses, const float* dist,
|
|
|
|
CvMat* _results, CvMat* _neighbor_responses,
|
|
|
|
CvMat* _dist, Cv32suf* sort_buf ) const
|
|
|
|
{
|
|
|
|
float result = 0.f;
|
|
|
|
int i, j, j1, count = end - start;
|
|
|
|
double inv_scale = 1./k1;
|
|
|
|
int rstep = _results && !CV_IS_MAT_CONT(_results->type) ? _results->step/sizeof(result) : 1;
|
|
|
|
|
|
|
|
for( i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
const Cv32suf* nr = (const Cv32suf*)(neighbor_responses + i*k);
|
|
|
|
float* dst;
|
|
|
|
float r;
|
|
|
|
if( _results || start+i == 0 )
|
|
|
|
{
|
|
|
|
if( regression )
|
|
|
|
{
|
|
|
|
double s = 0;
|
|
|
|
for( j = 0; j < k1; j++ )
|
|
|
|
s += nr[j].f;
|
|
|
|
r = (float)(s*inv_scale);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int prev_start = 0, best_count = 0, cur_count;
|
|
|
|
Cv32suf best_val;
|
|
|
|
|
|
|
|
for( j = 0; j < k1; j++ )
|
|
|
|
sort_buf[j].i = nr[j].i;
|
|
|
|
|
|
|
|
for( j = k1-1; j > 0; j-- )
|
|
|
|
{
|
|
|
|
bool swap_fl = false;
|
|
|
|
for( j1 = 0; j1 < j; j1++ )
|
|
|
|
if( sort_buf[j1].i > sort_buf[j1+1].i )
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
CV_SWAP( sort_buf[j1].i, sort_buf[j1+1].i, t );
|
|
|
|
swap_fl = true;
|
|
|
|
}
|
|
|
|
if( !swap_fl )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
best_val.i = 0;
|
|
|
|
for( j = 1; j <= k1; j++ )
|
|
|
|
if( j == k1 || sort_buf[j].i != sort_buf[j-1].i )
|
|
|
|
{
|
|
|
|
cur_count = j - prev_start;
|
|
|
|
if( best_count < cur_count )
|
|
|
|
{
|
|
|
|
best_count = cur_count;
|
|
|
|
best_val.i = sort_buf[j-1].i;
|
|
|
|
}
|
|
|
|
prev_start = j;
|
|
|
|
}
|
|
|
|
r = best_val.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( start+i == 0 )
|
|
|
|
result = r;
|
|
|
|
|
|
|
|
if( _results )
|
|
|
|
_results->data.fl[(start + i)*rstep] = r;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _neighbor_responses )
|
|
|
|
{
|
|
|
|
dst = (float*)(_neighbor_responses->data.ptr +
|
|
|
|
(start + i)*_neighbor_responses->step);
|
|
|
|
for( j = 0; j < k1; j++ )
|
|
|
|
dst[j] = nr[j].f;
|
|
|
|
for( ; j < k; j++ )
|
|
|
|
dst[j] = 0.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _dist )
|
|
|
|
{
|
|
|
|
dst = (float*)(_dist->data.ptr + (start + i)*_dist->step);
|
|
|
|
for( j = 0; j < k1; j++ )
|
|
|
|
dst[j] = dist[j + i*k];
|
|
|
|
for( ; j < k; j++ )
|
|
|
|
dst[j] = 0.f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* _results,
|
|
|
|
const float** _neighbors, CvMat* _neighbor_responses, CvMat* _dist ) const
|
|
|
|
{
|
|
|
|
float result = 0.f;
|
|
|
|
bool local_alloc = false;
|
|
|
|
float* buf = 0;
|
|
|
|
const int max_blk_count = 128, max_buf_sz = 1 << 12;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvKNearest::find_nearest" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int i, count, count_scale, blk_count0, blk_count = 0, buf_sz, k1;
|
|
|
|
|
|
|
|
if( !samples )
|
|
|
|
CV_ERROR( CV_StsError, "The search tree must be constructed first using train method" );
|
|
|
|
|
|
|
|
if( !CV_IS_MAT(_samples) ||
|
|
|
|
CV_MAT_TYPE(_samples->type) != CV_32FC1 ||
|
|
|
|
_samples->cols != var_count )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Input samples must be floating-point matrix (<num_samples>x<var_count>)" );
|
|
|
|
|
|
|
|
if( _results && (!CV_IS_MAT(_results) ||
|
|
|
|
(_results->cols != 1 && _results->rows != 1) ||
|
|
|
|
_results->cols + _results->rows - 1 != _samples->rows) )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"The results must be 1d vector containing as much elements as the number of samples" );
|
|
|
|
|
|
|
|
if( _results && CV_MAT_TYPE(_results->type) != CV_32FC1 &&
|
|
|
|
(CV_MAT_TYPE(_results->type) != CV_32SC1 || regression))
|
|
|
|
CV_ERROR( CV_StsUnsupportedFormat,
|
|
|
|
"The results must be floating-point or integer (in case of classification) vector" );
|
|
|
|
|
|
|
|
if( k < 1 || k > max_k )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "k must be within 1..max_k range" );
|
|
|
|
|
|
|
|
if( _neighbor_responses )
|
|
|
|
{
|
|
|
|
if( !CV_IS_MAT(_neighbor_responses) || CV_MAT_TYPE(_neighbor_responses->type) != CV_32FC1 ||
|
|
|
|
_neighbor_responses->rows != _samples->rows || _neighbor_responses->cols != k )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"The neighbor responses (if present) must be floating-point matrix of <num_samples> x <k> size" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _dist )
|
|
|
|
{
|
|
|
|
if( !CV_IS_MAT(_dist) || CV_MAT_TYPE(_dist->type) != CV_32FC1 ||
|
|
|
|
_dist->rows != _samples->rows || _dist->cols != k )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"The distances from the neighbors (if present) must be floating-point matrix of <num_samples> x <k> size" );
|
|
|
|
}
|
|
|
|
|
|
|
|
count = _samples->rows;
|
|
|
|
count_scale = k*2*sizeof(float);
|
|
|
|
blk_count0 = MIN( count, max_blk_count );
|
|
|
|
buf_sz = MIN( blk_count0 * count_scale, max_buf_sz );
|
|
|
|
blk_count0 = MAX( buf_sz/count_scale, 1 );
|
|
|
|
blk_count0 += blk_count0 % 2;
|
|
|
|
blk_count0 = MIN( blk_count0, count );
|
|
|
|
buf_sz = blk_count0 * count_scale + k*sizeof(float);
|
|
|
|
k1 = get_sample_count();
|
|
|
|
k1 = MIN( k1, k );
|
|
|
|
|
|
|
|
if( buf_sz <= CV_MAX_LOCAL_SIZE )
|
|
|
|
{
|
|
|
|
buf = (float*)cvStackAlloc( buf_sz );
|
|
|
|
local_alloc = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL( buf = (float*)cvAlloc( buf_sz ));
|
|
|
|
|
|
|
|
for( i = 0; i < count; i += blk_count )
|
|
|
|
{
|
|
|
|
blk_count = MIN( count - i, blk_count0 );
|
|
|
|
float* neighbor_responses = buf;
|
|
|
|
float* dist = buf + blk_count*k;
|
|
|
|
Cv32suf* sort_buf = (Cv32suf*)(dist + blk_count*k);
|
|
|
|
|
|
|
|
find_neighbors_direct( _samples, k, i, i + blk_count,
|
|
|
|
neighbor_responses, _neighbors, dist );
|
|
|
|
|
|
|
|
float r = write_results( k, k1, i, i + blk_count, neighbor_responses, dist,
|
|
|
|
_results, _neighbor_responses, _dist, sort_buf );
|
|
|
|
if( i == 0 )
|
|
|
|
result = r;
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
if( !local_alloc )
|
|
|
|
cvFree( &buf );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
CvKNearest::CvKNearest( const Mat& _train_data, const Mat& _responses,
|
|
|
|
const Mat& _sample_idx, bool _is_regression, int _max_k )
|
|
|
|
{
|
|
|
|
samples = 0;
|
|
|
|
train(_train_data, _responses, _sample_idx, _is_regression, _max_k, false );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CvKNearest::train( const Mat& _train_data, const Mat& _responses,
|
|
|
|
const Mat& _sample_idx, bool _is_regression,
|
|
|
|
int _max_k, bool _update_base )
|
|
|
|
{
|
|
|
|
CvMat tdata = _train_data, responses = _responses, sidx = _sample_idx;
|
|
|
|
|
|
|
|
return train(&tdata, &responses, sidx.data.ptr ? &sidx : 0, _is_regression, _max_k, _update_base );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float CvKNearest::find_nearest( const Mat& _samples, int k, Mat* _results,
|
|
|
|
const float** _neighbors, Mat* _neighbor_responses,
|
|
|
|
Mat* _dist ) const
|
|
|
|
{
|
|
|
|
CvMat s = _samples, results, *presults = 0, nresponses, *pnresponses = 0, dist, *pdist = 0;
|
|
|
|
|
|
|
|
if( _results )
|
|
|
|
{
|
|
|
|
if(!(_results->data && (_results->type() == CV_32F ||
|
|
|
|
(_results->type() == CV_32S && regression)) &&
|
|
|
|
(_results->cols == 1 || _results->rows == 1) ||
|
|
|
|
_results->cols + _results->rows - 1 == _samples.rows) )
|
|
|
|
_results->create(_samples.rows, 1, CV_32F);
|
|
|
|
presults = &(results = *_results);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _neighbor_responses )
|
|
|
|
{
|
|
|
|
if(!(_neighbor_responses->data && _neighbor_responses->type() == CV_32F &&
|
|
|
|
_neighbor_responses->cols == k && _neighbor_responses->rows == _samples.rows) )
|
|
|
|
_neighbor_responses->create(_samples.rows, k, CV_32F);
|
|
|
|
pnresponses = &(nresponses = *_neighbor_responses);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _dist )
|
|
|
|
{
|
|
|
|
if(!(_dist->data && _dist->type() == CV_32F &&
|
|
|
|
_dist->cols == k && _dist->rows == _samples.rows) )
|
|
|
|
_dist->create(_samples.rows, k, CV_32F);
|
|
|
|
pdist = &(dist = *_dist);
|
|
|
|
}
|
|
|
|
|
|
|
|
return find_nearest(&s, k, presults, _neighbors, pnresponses, pdist );
|
|
|
|
}
|
|
|
|
|
2010-11-03 01:58:22 +08:00
|
|
|
|
|
|
|
float CvKNearest::find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
|
|
|
|
CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const
|
|
|
|
{
|
|
|
|
return find_nearest(samples, k, &results, 0, &neighborResponses, &dists);
|
|
|
|
}
|
|
|
|
|
2010-05-12 01:44:00 +08:00
|
|
|
/* End of file */
|
|
|
|
|