opencv/modules/dnn/src/layers/layers_common.cpp

242 lines
9.2 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
2018-02-28 21:44:41 +08:00
#include "../precomp.hpp"
#include "layers_common.hpp"
namespace cv
{
namespace dnn
{
namespace util
{
std::string makeName(const std::string& str1, const std::string& str2)
{
return str1 + str2;
}
bool getParameter(const LayerParams &params, const std::string& nameBase, const std::string& nameAll,
std::vector<size_t>& parameter, bool hasDefault = false, const std::vector<size_t>& defaultValue = std::vector<size_t>(2, 0))
{
std::string nameH = makeName(nameBase, std::string("_h"));
std::string nameW = makeName(nameBase, std::string("_w"));
std::string nameAll_ = nameAll;
if (nameAll_ == "")
nameAll_ = nameBase;
if (params.has(nameH) && params.has(nameW))
{
CV_Assert(params.get<int>(nameH) >= 0 && params.get<int>(nameW) >= 0);
parameter.push_back(params.get<int>(nameH));
parameter.push_back(params.get<int>(nameW));
return true;
}
else
{
if (params.has(nameAll_))
{
DictValue param = params.get(nameAll_);
for (int i = 0; i < param.size(); i++) {
CV_Assert(param.get<int>(i) >= 0);
parameter.push_back(param.get<int>(i));
}
if (parameter.size() == 1)
parameter.resize(2, parameter[0]);
return true;
}
else
{
if (hasDefault)
{
parameter = defaultValue;
return true;
}
else
{
return false;
}
}
}
}
void getKernelSize(const LayerParams &params, std::vector<size_t>& kernel)
{
if (!util::getParameter(params, "kernel", "kernel_size", kernel))
CV_Error(cv::Error::StsBadArg, "kernel_size (or kernel_h and kernel_w) not specified");
for (int i = 0; i < kernel.size(); i++)
CV_Assert(kernel[i] > 0);
}
void getStrideAndPadding(const LayerParams &params, std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
std::vector<size_t>& strides, cv::String& padMode, size_t kernel_size = 2)
{
if (params.has("pad_l") && params.has("pad_t") && params.has("pad_r") && params.has("pad_b")) {
CV_Assert(params.get<int>("pad_t") >= 0 && params.get<int>("pad_l") >= 0 &&
params.get<int>("pad_b") >= 0 && params.get<int>("pad_r") >= 0);
pads_begin.push_back(params.get<int>("pad_t"));
pads_begin.push_back(params.get<int>("pad_l"));
pads_end.push_back(params.get<int>("pad_b"));
pads_end.push_back(params.get<int>("pad_r"));
}
else {
util::getParameter(params, "pad", "pad", pads_begin, true, std::vector<size_t>(kernel_size, 0));
if (pads_begin.size() < 4)
pads_end = pads_begin;
else
{
pads_end = std::vector<size_t>(pads_begin.begin() + pads_begin.size() / 2, pads_begin.end());
pads_begin.resize(pads_begin.size() / 2);
}
CV_Assert(pads_begin.size() == pads_end.size());
}
util::getParameter(params, "stride", "stride", strides, true, std::vector<size_t>(kernel_size, 1));
padMode = "";
if (params.has("pad_mode"))
{
padMode = params.get<String>("pad_mode");
}
for (int i = 0; i < strides.size(); i++)
CV_Assert(strides[i] > 0);
}
}
void getPoolingKernelParams(const LayerParams &params, std::vector<size_t>& kernel, bool &globalPooling,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
std::vector<size_t>& strides, cv::String &padMode)
{
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode);
2017-07-10 17:58:11 +08:00
globalPooling = params.has("global_pooling") &&
params.get<bool>("global_pooling");
if (globalPooling)
{
if(params.has("kernel_h") || params.has("kernel_w") || params.has("kernel_size"))
{
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, kernel_size (or kernel_h and kernel_w) cannot be specified");
}
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != 0 || pads_end[i] != 0)
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, pads must be = 0");
}
for (int i = 0; i < strides.size(); i++) {
if (strides[i] != 1)
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, strides must be = 1");
}
}
else
{
util::getKernelSize(params, kernel);
}
}
void getConvolutionKernelParams(const LayerParams &params, std::vector<size_t>& kernel, std::vector<size_t>& pads_begin,
std::vector<size_t>& pads_end, std::vector<size_t>& strides, std::vector<size_t>& dilations, cv::String &padMode)
{
util::getKernelSize(params, kernel);
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode, kernel.size());
util::getParameter(params, "dilation", "dilation", dilations, true, std::vector<size_t>(kernel.size(), 1));
for (int i = 0; i < dilations.size(); i++)
CV_Assert(dilations[i] > 0);
}
// From TensorFlow code:
// Total padding on rows and cols is
// Pr = (R' - 1) * S + Kr - R
// Pc = (C' - 1) * S + Kc - C
// where (R', C') are output dimensions, (R, C) are input dimensions, S
// is stride, (Kr, Kc) are filter dimensions.
// We pad Pr/2 on the left and Pr - Pr/2 on the right, Pc/2 on the top
// and Pc - Pc/2 on the bottom. When Pr or Pc is odd, this means
// we pad more on the right and bottom than on the top and left.
void getConvPoolOutParams(const std::vector<int>& inp, const std::vector<size_t>& kernel,
const std::vector<size_t>& stride, const String &padMode,
const std::vector<size_t>& dilation, std::vector<int>& out)
{
if (padMode == "VALID")
{
for (int i = 0; i < inp.size(); i++)
out.push_back((inp[i] - dilation[i] * (kernel[i] - 1) - 1 + stride[i]) / stride[i]);
}
else if (padMode == "SAME")
{
for (int i = 0; i < inp.size(); i++)
out.push_back((inp[i] - 1 + stride[i]) / stride[i]);
}
else
{
CV_Error(Error::StsError, "Unsupported padding mode");
}
}
void getConvPoolPaddings(const std::vector<int>& inp, const std::vector<int>& out,
const std::vector<size_t>& kernel, const std::vector<size_t>& strides,
const String &padMode, const std::vector<size_t>& dilation,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end)
{
if (padMode == "VALID")
{
pads_begin.assign(kernel.size(), 0);
pads_end.assign(kernel.size(), 0);
}
else if (padMode == "SAME")
{
CV_Assert_N(kernel.size() == dilation.size(), kernel.size() == strides.size(),
kernel.size() == inp.size(), kernel.size() == out.size());
pads_begin.resize(kernel.size());
pads_end.resize(kernel.size());
for (int i = 0; i < pads_begin.size(); i++) {
int pad = ((out[i] - 1) * strides[i] + dilation[i] * (kernel[i] - 1) + 1 - inp[i]) / 2;
pads_begin[i] = pads_end[i] = std::max(0, pad);
}
}
}
}
}