2018-03-02 17:04:39 +08:00
|
|
|
#include <fstream>
|
|
|
|
#include <sstream>
|
|
|
|
|
2018-03-03 21:43:21 +08:00
|
|
|
#include <opencv2/dnn.hpp>
|
2018-03-04 00:29:37 +08:00
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
2018-03-03 21:43:21 +08:00
|
|
|
|
2018-03-02 17:04:39 +08:00
|
|
|
const char* keys =
|
|
|
|
"{ help h | | Print help message. }"
|
|
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
|
|
|
"{ model m | | Path to a binary file of model contains trained weights. "
|
|
|
|
"It could be a file with extensions .caffemodel (Caffe), "
|
|
|
|
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }"
|
|
|
|
"{ config c | | Path to a text file of model contains network configuration. "
|
|
|
|
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }"
|
|
|
|
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
|
|
|
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
|
|
|
|
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
|
|
|
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
|
|
|
"{ width | -1 | Preprocess input image by resizing to a specific width. }"
|
|
|
|
"{ height | -1 | Preprocess input image by resizing to a specific height. }"
|
|
|
|
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
|
|
|
"{ thr | .5 | Confidence threshold. }"
|
2018-03-03 21:43:21 +08:00
|
|
|
"{ backend | 0 | Choose one of computation backends: "
|
|
|
|
"0: default C++ backend, "
|
|
|
|
"1: Halide language (http://halide-lang.org/), "
|
|
|
|
"2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}"
|
|
|
|
"{ target | 0 | Choose one of target computation devices: "
|
|
|
|
"0: CPU target (by default),"
|
|
|
|
"1: OpenCL }";
|
2018-03-02 17:04:39 +08:00
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace dnn;
|
|
|
|
|
|
|
|
float confThreshold;
|
|
|
|
std::vector<std::string> classes;
|
|
|
|
|
|
|
|
void postprocess(Mat& frame, const Mat& out, Net& net);
|
|
|
|
|
|
|
|
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
|
|
|
|
|
|
|
|
void callback(int pos, void* userdata);
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
|
|
|
|
if (argc == 1 || parser.has("help"))
|
|
|
|
{
|
|
|
|
parser.printMessage();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
confThreshold = parser.get<float>("thr");
|
|
|
|
float scale = parser.get<float>("scale");
|
2018-03-07 00:29:23 +08:00
|
|
|
Scalar mean = parser.get<Scalar>("mean");
|
2018-03-02 17:04:39 +08:00
|
|
|
bool swapRB = parser.get<bool>("rgb");
|
|
|
|
int inpWidth = parser.get<int>("width");
|
|
|
|
int inpHeight = parser.get<int>("height");
|
|
|
|
|
|
|
|
// Open file with classes names.
|
|
|
|
if (parser.has("classes"))
|
|
|
|
{
|
|
|
|
std::string file = parser.get<String>("classes");
|
|
|
|
std::ifstream ifs(file.c_str());
|
|
|
|
if (!ifs.is_open())
|
|
|
|
CV_Error(Error::StsError, "File " + file + " not found");
|
|
|
|
std::string line;
|
2018-03-03 21:43:21 +08:00
|
|
|
while (std::getline(ifs, line))
|
2018-03-02 17:04:39 +08:00
|
|
|
{
|
|
|
|
classes.push_back(line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Load a model.
|
|
|
|
CV_Assert(parser.has("model"));
|
|
|
|
Net net = readNet(parser.get<String>("model"), parser.get<String>("config"), parser.get<String>("framework"));
|
2018-03-03 21:43:21 +08:00
|
|
|
net.setPreferableBackend(parser.get<int>("backend"));
|
|
|
|
net.setPreferableTarget(parser.get<int>("target"));
|
2018-03-02 17:04:39 +08:00
|
|
|
|
|
|
|
// Create a window
|
|
|
|
static const std::string kWinName = "Deep learning object detection in OpenCV";
|
|
|
|
namedWindow(kWinName, WINDOW_NORMAL);
|
2018-03-04 00:29:37 +08:00
|
|
|
int initialConf = (int)(confThreshold * 100);
|
2018-03-03 21:43:21 +08:00
|
|
|
createTrackbar("Confidence threshold, %", kWinName, &initialConf, 99, callback);
|
2018-03-02 17:04:39 +08:00
|
|
|
|
|
|
|
// Open a video file or an image file or a camera stream.
|
|
|
|
VideoCapture cap;
|
|
|
|
if (parser.has("input"))
|
|
|
|
cap.open(parser.get<String>("input"));
|
|
|
|
else
|
|
|
|
cap.open(0);
|
|
|
|
|
|
|
|
// Process frames.
|
|
|
|
Mat frame, blob;
|
|
|
|
while (waitKey(1) < 0)
|
|
|
|
{
|
|
|
|
cap >> frame;
|
|
|
|
if (frame.empty())
|
|
|
|
{
|
|
|
|
waitKey();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a 4D blob from a frame.
|
|
|
|
Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,
|
|
|
|
inpHeight > 0 ? inpHeight : frame.rows);
|
|
|
|
blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);
|
|
|
|
|
|
|
|
// Run a model.
|
|
|
|
net.setInput(blob);
|
|
|
|
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
|
|
|
{
|
|
|
|
resize(frame, frame, inpSize);
|
|
|
|
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
|
|
|
|
net.setInput(imInfo, "im_info");
|
|
|
|
}
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
postprocess(frame, out, net);
|
|
|
|
|
|
|
|
// Put efficiency information.
|
|
|
|
std::vector<double> layersTimes;
|
2018-03-04 00:29:37 +08:00
|
|
|
double freq = getTickFrequency() / 1000;
|
|
|
|
double t = net.getPerfProfile(layersTimes) / freq;
|
|
|
|
std::string label = format("Inference time: %.2f ms", t);
|
2018-03-03 21:43:21 +08:00
|
|
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
2018-03-02 17:04:39 +08:00
|
|
|
|
|
|
|
imshow(kWinName, frame);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void postprocess(Mat& frame, const Mat& out, Net& net)
|
|
|
|
{
|
|
|
|
static std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
|
|
|
static std::string outLayerType = net.getLayer(outLayers[0])->type;
|
|
|
|
|
|
|
|
float* data = (float*)out.data;
|
|
|
|
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
|
|
|
{
|
|
|
|
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
|
|
|
// detections and an every detection is a vector of values
|
|
|
|
// [batchId, classId, confidence, left, top, right, bottom]
|
|
|
|
for (size_t i = 0; i < out.total(); i += 7)
|
|
|
|
{
|
|
|
|
float confidence = data[i + 2];
|
|
|
|
if (confidence > confThreshold)
|
|
|
|
{
|
2018-03-04 00:29:37 +08:00
|
|
|
int left = (int)data[i + 3];
|
|
|
|
int top = (int)data[i + 4];
|
|
|
|
int right = (int)data[i + 5];
|
|
|
|
int bottom = (int)data[i + 6];
|
2018-03-02 17:04:39 +08:00
|
|
|
int classId = (int)(data[i + 1]) - 1; // Skip 0th background class id.
|
|
|
|
drawPred(classId, confidence, left, top, right, bottom, frame);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (outLayerType == "DetectionOutput")
|
|
|
|
{
|
|
|
|
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
|
|
|
// detections and an every detection is a vector of values
|
|
|
|
// [batchId, classId, confidence, left, top, right, bottom]
|
|
|
|
for (size_t i = 0; i < out.total(); i += 7)
|
|
|
|
{
|
|
|
|
float confidence = data[i + 2];
|
|
|
|
if (confidence > confThreshold)
|
|
|
|
{
|
|
|
|
int left = (int)(data[i + 3] * frame.cols);
|
|
|
|
int top = (int)(data[i + 4] * frame.rows);
|
|
|
|
int right = (int)(data[i + 5] * frame.cols);
|
|
|
|
int bottom = (int)(data[i + 6] * frame.rows);
|
|
|
|
int classId = (int)(data[i + 1]) - 1; // Skip 0th background class id.
|
|
|
|
drawPred(classId, confidence, left, top, right, bottom, frame);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (outLayerType == "Region")
|
|
|
|
{
|
|
|
|
// Network produces output blob with a shape NxC where N is a number of
|
|
|
|
// detected objects and C is a number of classes + 4 where the first 4
|
|
|
|
// numbers are [center_x, center_y, width, height]
|
|
|
|
for (int i = 0; i < out.rows; ++i, data += out.cols)
|
|
|
|
{
|
|
|
|
Mat confidences = out.row(i).colRange(5, out.cols);
|
|
|
|
Point classIdPoint;
|
|
|
|
double confidence;
|
|
|
|
minMaxLoc(confidences, 0, &confidence, 0, &classIdPoint);
|
|
|
|
if (confidence > confThreshold)
|
|
|
|
{
|
|
|
|
int classId = classIdPoint.x;
|
|
|
|
int centerX = (int)(data[0] * frame.cols);
|
|
|
|
int centerY = (int)(data[1] * frame.rows);
|
|
|
|
int width = (int)(data[2] * frame.cols);
|
|
|
|
int height = (int)(data[3] * frame.rows);
|
|
|
|
int left = centerX - width / 2;
|
|
|
|
int top = centerY - height / 2;
|
2018-03-04 00:29:37 +08:00
|
|
|
drawPred(classId, (float)confidence, left, top, left + width, top + height, frame);
|
2018-03-02 17:04:39 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType);
|
|
|
|
}
|
|
|
|
|
|
|
|
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
|
|
|
|
{
|
|
|
|
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
|
|
|
|
|
|
|
|
std::string label = format("%.2f", conf);
|
|
|
|
if (!classes.empty())
|
|
|
|
{
|
|
|
|
CV_Assert(classId < (int)classes.size());
|
|
|
|
label = classes[classId] + ": " + label;
|
|
|
|
}
|
|
|
|
|
|
|
|
int baseLine;
|
|
|
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
|
|
|
|
|
|
|
top = max(top, labelSize.height);
|
|
|
|
rectangle(frame, Point(left, top - labelSize.height),
|
|
|
|
Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);
|
|
|
|
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
|
|
|
|
}
|
|
|
|
|
|
|
|
void callback(int pos, void*)
|
|
|
|
{
|
2018-03-04 00:29:37 +08:00
|
|
|
confThreshold = pos * 0.01f;
|
2018-03-02 17:04:39 +08:00
|
|
|
}
|