2023-03-23 20:42:41 +08:00
|
|
|
# This file is part of OpenCV project.
|
|
|
|
# It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
# of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
2024-02-14 20:17:01 +08:00
|
|
|
# The script generates synthetic data for multi-camera calibration assessment
|
|
|
|
# Input: cameras configuration. See config_cv_test.yaml
|
|
|
|
# Output: generated object points (3d), image points (2d) for calibration and
|
|
|
|
# board poses ground truth (R, t) for check
|
|
|
|
|
2023-03-23 20:42:41 +08:00
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
import yaml
|
|
|
|
from drawer import animation2D, animation3D
|
2024-02-14 19:26:18 +08:00
|
|
|
from utils import RandGen, insideImage, eul2rot, saveKDRT, areAllInsideImage, insideImageMask, projectCamera, export2JSON, writeMatrix
|
2023-03-23 20:42:41 +08:00
|
|
|
from pathlib import Path
|
|
|
|
from board import CheckerBoard
|
2024-02-14 20:17:01 +08:00
|
|
|
import os
|
|
|
|
import json
|
2023-03-23 20:42:41 +08:00
|
|
|
|
|
|
|
class Camera:
|
|
|
|
def __init__(self, idx, img_width, img_height, fx_limit, euler_limit, t_limit, is_fisheye, fy_deviation=None, skew=None,
|
|
|
|
distortion_limit=None, noise_scale_img_diag=None):
|
|
|
|
"""
|
|
|
|
@skew : is either None or in radians
|
|
|
|
@fy_deviation : is either None (that is fx=fy) or value such that fy = [fx*(1-fy_deviation/100), fx*(1+fy_deviation/100)]
|
|
|
|
@distortion_limit : is either None or array of size (num_tangential_dist+num_radial_dist) x 2
|
|
|
|
@euler_limit : is 3 x 2 limit of euler angles in degrees
|
|
|
|
@t_limit : is 3 x 2 limit of translation in meters
|
|
|
|
"""
|
|
|
|
assert len(fx_limit) == 2 and img_width >= 0 and img_width >= 0
|
|
|
|
if is_fisheye and distortion_limit is not None: assert len(distortion_limit) == 4 # distortion for fisheye has only 4 parameters
|
|
|
|
self.idx = idx
|
|
|
|
self.img_width, self.img_height = img_width, img_height
|
|
|
|
self.fx_min = fx_limit[0]
|
|
|
|
self.fx_max = fx_limit[1]
|
|
|
|
self.fy_deviation = fy_deviation
|
|
|
|
self.img_diag = math.sqrt(img_height ** 2 + img_width ** 2)
|
|
|
|
self.is_fisheye = is_fisheye
|
|
|
|
self.fx, self.fy = None, None
|
|
|
|
self.px, self.py = None, None
|
|
|
|
self.K, self.R, self.t, self.P = None, None, None, None
|
|
|
|
self.skew = skew
|
|
|
|
self.distortion = None
|
|
|
|
self.distortion_lim = distortion_limit
|
|
|
|
self.euler_limit = np.array(euler_limit, dtype=np.float32)
|
|
|
|
self.t_limit = t_limit
|
|
|
|
self.noise_scale_img_diag = noise_scale_img_diag
|
|
|
|
if idx != 0:
|
|
|
|
assert len(euler_limit) == len(t_limit) == 3
|
|
|
|
for i in range(3):
|
|
|
|
assert len(euler_limit[i]) == len(t_limit[i]) == 2
|
|
|
|
self.euler_limit[i] *= (np.pi / 180)
|
|
|
|
|
|
|
|
def generateAll(cameras, board, num_frames, rand_gen, MAX_RAND_ITERS=10000, save_proj_animation=None, save_3d_animation=None):
|
|
|
|
EPS = 1e-10
|
|
|
|
"""
|
|
|
|
output:
|
|
|
|
points_2d: NUM_FRAMES x NUM_CAMERAS x 2 x NUM_PTS
|
|
|
|
"""
|
|
|
|
|
|
|
|
for i in range(len(cameras)):
|
|
|
|
cameras[i].t = np.zeros((3, 1))
|
|
|
|
if cameras[i].idx == 0:
|
|
|
|
cameras[i].R = np.identity(3)
|
|
|
|
else:
|
|
|
|
angles = [0, 0, 0]
|
|
|
|
for k in range(3):
|
|
|
|
if abs(cameras[i].t_limit[k][0] - cameras[i].t_limit[k][1]) < EPS:
|
|
|
|
cameras[i].t[k] = cameras[i].t_limit[k][0]
|
|
|
|
else:
|
|
|
|
cameras[i].t[k] = rand_gen.randRange(cameras[i].t_limit[k][0], cameras[i].t_limit[k][1])
|
|
|
|
|
|
|
|
if abs(cameras[i].euler_limit[k][0] - cameras[i].euler_limit[k][1]) < EPS:
|
|
|
|
angles[k] = cameras[i].euler_limit[k][0]
|
|
|
|
else:
|
|
|
|
angles[k] = rand_gen.randRange(cameras[i].euler_limit[k][0], cameras[i].euler_limit[k][1])
|
|
|
|
|
|
|
|
cameras[i].R = eul2rot(angles)
|
|
|
|
|
|
|
|
if abs(cameras[i].fx_min - cameras[i].fx_max) < EPS:
|
|
|
|
cameras[i].fx = cameras[i].fx_min
|
|
|
|
else:
|
|
|
|
cameras[i].fx = rand_gen.randRange(cameras[i].fx_min, cameras[i].fx_max)
|
|
|
|
if cameras[i].fy_deviation is None:
|
|
|
|
cameras[i].fy = cameras[i].fx
|
|
|
|
else:
|
|
|
|
cameras[i].fy = rand_gen.randRange((1 - cameras[i].fy_deviation) * cameras[i].fx,
|
|
|
|
(1 + cameras[i].fy_deviation) * cameras[i].fx)
|
|
|
|
|
|
|
|
cameras[i].px = int(cameras[i].img_width / 2.0) + 1
|
|
|
|
cameras[i].py = int(cameras[i].img_height / 2.0) + 1
|
|
|
|
cameras[i].K = np.array([[cameras[i].fx, 0, cameras[i].px], [0, cameras[i].fy, cameras[i].py], [0, 0, 1]], dtype=float)
|
|
|
|
if cameras[i].skew is not None: cameras[i].K[0, 1] = np.tan(cameras[i].skew) * cameras[i].K[0, 0]
|
|
|
|
cameras[i].P = cameras[i].K @ np.concatenate((cameras[i].R, cameras[i].t), 1)
|
|
|
|
|
|
|
|
if cameras[i].distortion_lim is not None:
|
|
|
|
cameras[i].distortion = np.zeros((1, len(cameras[i].distortion_lim))) # opencv using 5 values distortion as default
|
|
|
|
for k, lim in enumerate(cameras[i].distortion_lim):
|
|
|
|
cameras[i].distortion[0,k] = rand_gen.randRange(lim[0], lim[1])
|
|
|
|
else:
|
|
|
|
cameras[i].distortion = np.zeros((1, 5)) # opencv is using 5 values distortion as default
|
|
|
|
|
|
|
|
origin = None
|
|
|
|
box = np.array([[0, board.square_len * (board.w - 1), 0, board.square_len * (board.w - 1)],
|
|
|
|
[0, 0, board.square_len * (board.h - 1), board.square_len * (board.h - 1)],
|
|
|
|
[0, 0, 0, 0]])
|
|
|
|
|
|
|
|
if board.t_origin is None:
|
|
|
|
try:
|
|
|
|
import torch, pytorch3d, pytorch3d.transforms
|
|
|
|
has_pytorch = True
|
|
|
|
except:
|
|
|
|
has_pytorch = False
|
|
|
|
|
|
|
|
if has_pytorch:
|
|
|
|
rot_angles = torch.zeros(3, requires_grad=True)
|
|
|
|
origin = torch.ones((3,1), requires_grad=True)
|
|
|
|
optimizer = torch.optim.Adam([rot_angles, origin], lr=5e-3)
|
|
|
|
Ps = torch.tensor(np.stack([cam.K @ np.concatenate((cam.R, cam.t), 1) for cam in cameras]), dtype=torch.float32)
|
|
|
|
rot_conv = 'XYZ'
|
|
|
|
board_pattern = torch.tensor(box, dtype=Ps.dtype)
|
|
|
|
corners = torch.tensor([[[0, 0], [0, cam.img_height], [cam.img_width, 0], [cam.img_width, cam.img_height]] for cam in cameras], dtype=Ps.dtype).transpose(-1,-2)
|
|
|
|
loss_fnc = torch.nn.HuberLoss()
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', min_lr=1e-4, factor=0.8, patience=10)
|
|
|
|
prev_loss = 1e10
|
|
|
|
torch.autograd.set_detect_anomaly(True)
|
|
|
|
MAX_DEPTH = 4
|
|
|
|
for it in range(500):
|
|
|
|
pts_board = pytorch3d.transforms.euler_angles_to_matrix(rot_angles, rot_conv) @ board_pattern + origin
|
|
|
|
pts_proj = Ps[:,:3,:3] @ pts_board[None,:] + Ps[:,:,[-1]]
|
|
|
|
pts_proj = pts_proj[:, :2] / (pts_proj[:, [2]]+1e-15)
|
|
|
|
|
|
|
|
loss = num_wrong = 0
|
|
|
|
for i, proj in enumerate(pts_proj):
|
|
|
|
if not areAllInsideImage(pts_proj[i], cameras[i].img_width, cameras[i].img_height):
|
|
|
|
loss += loss_fnc(corners[i], pts_proj[i])
|
|
|
|
num_wrong += 1
|
|
|
|
if num_wrong > 0:
|
|
|
|
loss /= num_wrong
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step(loss)
|
|
|
|
if origin[2] < 0:
|
|
|
|
with torch.no_grad(): origin[2] = 2.0
|
|
|
|
if it % 5 == 0:
|
|
|
|
print('iter', it, 'loss %.2E' % loss)
|
|
|
|
if abs(prev_loss - loss) < 1e-10:
|
|
|
|
break
|
|
|
|
prev_loss = loss.item()
|
|
|
|
else:
|
|
|
|
print('all points inside')
|
|
|
|
break
|
|
|
|
print(origin)
|
|
|
|
points_board = (torch.tensor(board.pattern, dtype=Ps.dtype) + origin).detach().numpy()
|
|
|
|
else:
|
|
|
|
max_sum_diag = 0.0
|
|
|
|
total_tested = 0
|
|
|
|
for z in np.arange(0.25, 50, .5):
|
|
|
|
if origin is not None: break # will not update
|
|
|
|
min_x1, max_x1 = -z * cameras[0].px / cameras[0].fx, (cameras[0].img_width * z - z * cameras[0].px) / cameras[0].fx
|
|
|
|
min_y1, max_y1 = -z * cameras[0].py / cameras[0].fy, (cameras[0].img_height * z - z * cameras[0].py) / cameras[0].fy
|
|
|
|
min_x2, max_x2 = -z * cameras[0].px / cameras[0].fx - box[0, 1], (cameras[0].img_width * z - z * cameras[0].px) / cameras[0].fx - box[0, 1]
|
|
|
|
min_y2, max_y2 = -z * cameras[0].py / cameras[0].fy - box[1, 2], (cameras[0].img_height * z - z * cameras[0].py) / cameras[0].fy - box[1, 2]
|
|
|
|
min_x = max(min_x1, min_x2)
|
|
|
|
min_y = max(min_y1, min_y2)
|
|
|
|
max_x = min(max_x1, max_x2)
|
|
|
|
max_y = min(max_y1, max_y2)
|
|
|
|
if max_x < min_x or max_y < min_y: continue
|
|
|
|
for x in np.linspace(min_x, max_x, 40):
|
|
|
|
for y in np.linspace(min_y, max_y, 40):
|
|
|
|
total_tested += 1
|
|
|
|
pts = box + np.array([[x], [y], [z]])
|
|
|
|
sum_diag = 0.0
|
|
|
|
all_visible = True
|
|
|
|
for i in range(len(cameras)):
|
|
|
|
pts_proj = projectCamera(cameras[i], pts)
|
|
|
|
visible_pts = insideImage(pts_proj, cameras[i].img_width, cameras[i].img_height)
|
|
|
|
if visible_pts != pts_proj.shape[1]:
|
|
|
|
# print(i,')',x, y, z, 'not visible, total', visible_pts, '/', pts_proj.shape[1])
|
|
|
|
all_visible = False
|
|
|
|
break
|
|
|
|
sum_diag += np.linalg.norm(pts_proj[:, 0] - pts_proj[:, -1])
|
|
|
|
if not all_visible: continue
|
|
|
|
if max_sum_diag < sum_diag:
|
|
|
|
max_sum_diag = sum_diag
|
|
|
|
origin = np.array([[x], [y], [z]])
|
|
|
|
points_board = board.pattern + origin
|
|
|
|
else:
|
|
|
|
points_board = board.pattern + board.t_origin
|
|
|
|
|
|
|
|
points_2d, points_3d = [], []
|
|
|
|
valid_frames_per_camera = np.zeros(len(cameras))
|
|
|
|
MIN_FRAMES_PER_CAM = int(num_frames * 0.1)
|
2024-02-14 19:26:18 +08:00
|
|
|
R_used = []
|
|
|
|
t_used = []
|
2023-03-23 20:42:41 +08:00
|
|
|
for frame in range(MAX_RAND_ITERS):
|
|
|
|
R_board = eul2rot([ rand_gen.randRange(board.euler_limit[0][0], board.euler_limit[0][1]),
|
|
|
|
rand_gen.randRange(board.euler_limit[1][0], board.euler_limit[1][1]),
|
|
|
|
rand_gen.randRange(board.euler_limit[2][0], board.euler_limit[2][1])])
|
|
|
|
t_board = np.array([[rand_gen.randRange(board.t_limit[0][0], board.t_limit[0][1])],
|
|
|
|
[rand_gen.randRange(board.t_limit[1][0], board.t_limit[1][1])],
|
|
|
|
[rand_gen.randRange(board.t_limit[2][0], board.t_limit[2][1])]])
|
|
|
|
|
|
|
|
points_board_mean = points_board.mean(-1)[:,None]
|
|
|
|
pts_board = R_board @ (points_board - points_board_mean) + points_board_mean + t_board
|
|
|
|
cam_points_2d = [projectCamera(cam, pts_board) for cam in cameras]
|
|
|
|
|
|
|
|
"""
|
|
|
|
# plot normals
|
|
|
|
board_normal = 10*np.cross(pts_board[:,board.w] - pts_board[:,0], pts_board[:,board.w-1] - pts_board[:,0])
|
|
|
|
ax = plotCamerasAndBoardFig(pts_board, cameras, pts_color=board.colors_board)
|
|
|
|
pts = np.stack((pts_board[:,0], pts_board[:,0]+board_normal))
|
|
|
|
ax.plot(pts[:,0], pts[:,1], pts[:,2], 'r-')
|
|
|
|
for ii, cam in enumerate(cameras):
|
|
|
|
pts = np.stack((cam.t.flatten(), cam.t.flatten()+cam.R[2]))
|
|
|
|
ax.plot(pts[:,0], pts[:,1], pts[:,2], 'g-')
|
|
|
|
print(ii, np.arccos(board_normal.dot(cam.R[2]) / np.linalg.norm(board_normal))*180/np.pi, np.arccos((-board_normal).dot(cam.R[2]) / np.linalg.norm(board_normal))*180/np.pi)
|
|
|
|
plotAllProjectionsFig(np.stack(cam_points_2d), cameras, pts_color=board.colors_board)
|
|
|
|
plt.show()
|
|
|
|
"""
|
|
|
|
|
|
|
|
for cam_idx in range(len(cameras)):
|
2024-02-14 19:26:18 +08:00
|
|
|
# Check whether the board is in front of the the image
|
|
|
|
pt_3d = cameras[cam_idx].R @ pts_board + cameras[cam_idx].t
|
|
|
|
if not board.isProjectionValid(cam_points_2d[cam_idx]) or np.min(pt_3d[2]) < 1e-3:
|
2023-03-23 20:42:41 +08:00
|
|
|
cam_points_2d[cam_idx] = -np.ones_like(cam_points_2d[cam_idx])
|
|
|
|
elif cameras[cam_idx].noise_scale_img_diag is not None:
|
|
|
|
cam_points_2d[cam_idx] += np.random.normal(0, cameras[cam_idx].img_diag * cameras[cam_idx].noise_scale_img_diag, cam_points_2d[cam_idx].shape)
|
|
|
|
|
|
|
|
### test
|
|
|
|
pts_inside_camera = np.zeros(len(cameras), dtype=bool)
|
|
|
|
for ii, pts_2d in enumerate(cam_points_2d):
|
|
|
|
mask = insideImageMask(pts_2d, cameras[ii].img_width, cameras[ii].img_height)
|
|
|
|
# cam_points_2d[ii] = cam_points_2d[ii][:,mask]
|
|
|
|
pts_inside_camera[ii] = mask.all()
|
|
|
|
# print(pts_inside, end=' ')
|
|
|
|
# print('from max inside', pts_board.shape[1])
|
|
|
|
###
|
|
|
|
|
|
|
|
if pts_inside_camera.sum() >= 2:
|
|
|
|
valid_frames_per_camera += np.array(pts_inside_camera, int)
|
|
|
|
print(valid_frames_per_camera)
|
|
|
|
points_2d.append(np.stack(cam_points_2d))
|
|
|
|
points_3d.append(pts_board)
|
|
|
|
|
2024-02-14 19:26:18 +08:00
|
|
|
R_used.append(R_board)
|
|
|
|
t_used.append(R_board @ (board.t_origin - points_board_mean) + points_board_mean + t_board)
|
|
|
|
|
2023-03-23 20:42:41 +08:00
|
|
|
if len(points_2d) >= num_frames and (valid_frames_per_camera >= MIN_FRAMES_PER_CAM).all():
|
|
|
|
print('tried samples', frame)
|
|
|
|
break
|
|
|
|
|
|
|
|
VIDEOS_FPS = 5
|
|
|
|
VIDEOS_DPI = 250
|
|
|
|
MAX_FRAMES = 100
|
|
|
|
if save_proj_animation is not None: animation2D(board, cameras, points_2d, save_proj_animation, VIDEOS_FPS, VIDEOS_DPI, MAX_FRAMES)
|
|
|
|
if save_3d_animation is not None: animation3D(board, cameras, points_3d, save_3d_animation, VIDEOS_FPS, VIDEOS_DPI, MAX_FRAMES)
|
|
|
|
|
|
|
|
print('number of found frames', len(points_2d))
|
2024-02-14 19:26:18 +08:00
|
|
|
return np.stack(points_2d), np.stack(points_3d), np.stack(R_used), np.stack(t_used)
|
2023-03-23 20:42:41 +08:00
|
|
|
|
|
|
|
def createConfigFile(fname, params):
|
|
|
|
file = open(fname, 'w')
|
|
|
|
|
|
|
|
def writeDict(dict_write, tab):
|
|
|
|
for key, value in dict_write.items():
|
|
|
|
if isinstance(value, dict):
|
|
|
|
file.write(tab+key+' :\n')
|
|
|
|
writeDict(value, tab+' ')
|
|
|
|
else:
|
|
|
|
file.write(tab+key+' : '+str(value)+'\n')
|
|
|
|
file.write('\n')
|
|
|
|
writeDict(params, '')
|
|
|
|
file.close()
|
|
|
|
|
|
|
|
def generateRoomConfiguration():
|
|
|
|
params = {'NAME' : '"room_corners"', 'NUM_SAMPLES': 1, 'SEED': 0, 'MAX_FRAMES' : 50, 'MAX_RANDOM_ITERS' : 100000, 'NUM_CAMERAS': 4,
|
|
|
|
'BOARD': {'WIDTH':9, 'HEIGHT':7, 'SQUARE_LEN':0.08, 'T_LIMIT': [[-0.2,0.2], [-0.2,0.2], [-0.1,0.1]], 'EULER_LIMIT': [[-45, 45], [-180, 180], [-45, 45]], 'T_ORIGIN': [-0.3,0,1.5]}}
|
|
|
|
params['CAMERA1'] = {'FX': [1200, 1200], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1500, 'IMG_HEIGHT': 1080, 'EULER_LIMIT': 'null', 'T_LIMIT': 'null', 'NOISE_SCALE': 3.0e-4, 'FISHEYE': False, 'DIST': [[5.2e-1,5.2e-1], [0,0], [0,0], [0,0], [0,0]]}
|
|
|
|
params['CAMERA2'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [90,90], [0,0]], 'T_LIMIT': [[-2.0,-2.0], [0.0, 0.0], [1.5, 1.5]], 'NOISE_SCALE': 3.5e-4, 'FISHEYE': False, 'DIST': [[3.2e-1,3.2e-1], [0,0], [0,0], [0,0], [0,0]]}
|
|
|
|
params['CAMERA3'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [-90,-90], [0,0]], 'T_LIMIT': [[2.0,2.0], [0.0, 0.0], [1.5, 1.5]], 'NOISE_SCALE': 4.0e-4, 'FISHEYE': False, 'DIST': [[6.2e-1,6.2e-1], [0,0], [0,0], [0,0], [0,0]]}
|
|
|
|
params['CAMERA4'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [180,180], [0,0]], 'T_LIMIT': [[0.0,0.0], [0.0, 0.0], [3.0, 3.0]], 'NOISE_SCALE': 3.2e-4, 'FISHEYE': False, 'DIST': [[4.2e-1,4.2e-1], [0,0], [0,0], [0,0], [0,0]]}
|
|
|
|
createConfigFile('python/configs/config_room_corners.yaml', params)
|
|
|
|
|
|
|
|
def generateCircularCameras():
|
|
|
|
rand_gen = RandGen(0)
|
|
|
|
params = {'NAME' : '"circular"', 'NUM_SAMPLES': 1, 'SEED': 0, 'MAX_FRAMES' : 70, 'MAX_RANDOM_ITERS' : 100000, 'NUM_CAMERAS': 9,
|
|
|
|
'BOARD': {'WIDTH': 9, 'HEIGHT': 7, 'SQUARE_LEN':0.08, 'T_LIMIT': [[-0.2,0.2], [-0.2,0.2], [-0.1,0.1]], 'EULER_LIMIT': [[-45, 45], [-180, 180], [-45, 45]], 'T_ORIGIN': [-0.3,0,2.2]}}
|
|
|
|
|
|
|
|
dist = 1.1
|
|
|
|
xs = np.arange(dist, dist*(params['NUM_CAMERAS']//4)+1e-3, dist)
|
|
|
|
xs = np.concatenate((xs, xs[::-1]))
|
|
|
|
xs = np.concatenate((xs, -xs))
|
|
|
|
dist_z = 0.90
|
|
|
|
zs = np.arange(dist_z, dist_z*(params['NUM_CAMERAS']//2)+1e-3, dist_z)
|
|
|
|
zs = np.concatenate((zs, zs[::-1]))
|
|
|
|
yaw = np.linspace(0, -360, params['NUM_CAMERAS']+1)[1:-1]
|
|
|
|
for i in range(9):
|
|
|
|
fx = rand_gen.randRange(900, 1300)
|
|
|
|
d0 = rand_gen.randRange(4e-1, 7e-1)
|
|
|
|
euler_limit = 'null'
|
|
|
|
t_limit = 'null'
|
|
|
|
if i > 0:
|
|
|
|
euler_limit = [[0,0], [yaw[i-1], yaw[i-1]], [0,0]]
|
|
|
|
t_limit = [[xs[i-1], xs[i-1]], [0,0], [zs[i-1], zs[i-1]]]
|
|
|
|
params['CAMERA'+str((i+1))] = {'FX': [fx, fx], 'FY_DEVIATION': 'null', 'IMG_WIDTH': int(rand_gen.randRange(1200, 1600)), 'IMG_HEIGHT': int(rand_gen.randRange(800, 1200)),
|
|
|
|
'EULER_LIMIT': euler_limit, 'T_LIMIT': t_limit, 'NOISE_SCALE': rand_gen.randRange(2e-4, 5e-4), 'FISHEYE': False, 'DIST': [[d0,d0], [0,0], [0,0], [0,0], [0,0]]}
|
|
|
|
|
|
|
|
createConfigFile('python/configs/config_circular.yaml', params)
|
|
|
|
|
|
|
|
def getCamerasFromCfg(cfg):
|
|
|
|
cameras = []
|
|
|
|
for i in range(cfg['NUM_CAMERAS']):
|
|
|
|
cameras.append(Camera(i, cfg['CAMERA' + str(i+1)]['IMG_WIDTH'], cfg['CAMERA' + str(i+1)]['IMG_HEIGHT'],
|
|
|
|
cfg['CAMERA' + str(i+1)]['FX'], cfg['CAMERA' + str(i+1)]['EULER_LIMIT'], cfg['CAMERA' + str(i+1)]['T_LIMIT'],
|
|
|
|
cfg['CAMERA' + str(i+1)]['FISHEYE'], cfg['CAMERA' + str(i+1)]['FY_DEVIATION'],
|
|
|
|
noise_scale_img_diag=cfg['CAMERA' + str(i+1)]['NOISE_SCALE'], distortion_limit=cfg['CAMERA' + str(i+1)]['DIST']))
|
|
|
|
return cameras
|
|
|
|
|
|
|
|
def main(cfg_name, save_folder):
|
|
|
|
cfg = yaml.safe_load(open(cfg_name, 'r'))
|
|
|
|
print(cfg)
|
|
|
|
np.random.seed(cfg['SEED'])
|
|
|
|
for trial in range(cfg['NUM_SAMPLES']):
|
|
|
|
Path(save_folder).mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
checkerboard = CheckerBoard(cfg['BOARD']['WIDTH'], cfg['BOARD']['HEIGHT'], cfg['BOARD']['SQUARE_LEN'], cfg['BOARD']['EULER_LIMIT'], cfg['BOARD']['T_LIMIT'], cfg['BOARD']['T_ORIGIN'])
|
|
|
|
cameras = getCamerasFromCfg(cfg)
|
2024-02-14 19:26:18 +08:00
|
|
|
points_2d, points_3d, R_used, t_used = generateAll(cameras, checkerboard, cfg['MAX_FRAMES'], RandGen(cfg['SEED']), cfg['MAX_RANDOM_ITERS'], save_folder+'plots_projections.mp4', save_folder+'board_cameras.mp4')
|
2023-03-23 20:42:41 +08:00
|
|
|
|
|
|
|
for i in range(len(cameras)):
|
|
|
|
print('Camera', i)
|
|
|
|
print('K', cameras[i].K)
|
|
|
|
print('R', cameras[i].R)
|
|
|
|
print('t', cameras[i].t.flatten())
|
|
|
|
print('distortion', cameras[i].distortion.flatten())
|
|
|
|
print('-----------------------------')
|
|
|
|
|
|
|
|
imgs_width_height = [[cam.img_width, cam.img_height] for cam in cameras]
|
|
|
|
is_fisheye = [cam.is_fisheye for cam in cameras]
|
|
|
|
export2JSON(checkerboard.pattern, points_2d, imgs_width_height, is_fisheye, save_folder+'opencv_sample_'+cfg['NAME']+'.json')
|
|
|
|
saveKDRT(cameras, save_folder+'gt.txt')
|
|
|
|
|
2024-02-14 19:26:18 +08:00
|
|
|
file = open(save_folder + "gt.txt", "a")
|
|
|
|
for i in range(R_used.shape[0]):
|
2024-02-14 20:17:01 +08:00
|
|
|
writeMatrix(file, 'R_%d' % i, R_used[i])
|
|
|
|
writeMatrix(file, 'T_%d' % i, t_used[i])
|
|
|
|
|
|
|
|
poses = dict()
|
|
|
|
for idx in range(len(R_used)):
|
|
|
|
poses['frame_%d' % idx] = {'R': R_used[idx].tolist(), 'T': t_used[idx].tolist()}
|
|
|
|
|
|
|
|
with open(os.path.join(save_folder, "gt_poses.json"), 'wt') as gt:
|
|
|
|
gt.write(json.dumps(poses, indent=4))
|
2024-02-14 19:26:18 +08:00
|
|
|
|
2023-03-23 20:42:41 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--cfg', type=str, required=True, help='path to config file, e.g., config_cv_test.yaml')
|
|
|
|
parser.add_argument('--output_folder', type=str, default='', help='output folder')
|
|
|
|
params, _ = parser.parse_known_args()
|
|
|
|
main(params.cfg, params.output_folder)
|