opencv/modules/core/test/test_io.cpp

1598 lines
52 KiB
C++
Raw Normal View History

#include "test_precomp.hpp"
using namespace cv;
using namespace std;
static SparseMat cvTsGetRandomSparseMat(int dims, const int* sz, int type,
int nzcount, double a, double b, RNG& rng)
{
SparseMat m(dims, sz, type);
int i, j;
CV_Assert(CV_MAT_CN(type) == 1);
for( i = 0; i < nzcount; i++ )
{
int idx[CV_MAX_DIM];
for( j = 0; j < dims; j++ )
idx[j] = cvtest::randInt(rng) % sz[j];
double val = cvtest::randReal(rng)*(b - a) + a;
uchar* ptr = m.ptr(idx, true, 0);
if( type == CV_8U )
*(uchar*)ptr = saturate_cast<uchar>(val);
else if( type == CV_8S )
*(schar*)ptr = saturate_cast<schar>(val);
else if( type == CV_16U )
*(ushort*)ptr = saturate_cast<ushort>(val);
else if( type == CV_16S )
*(short*)ptr = saturate_cast<short>(val);
else if( type == CV_32S )
*(int*)ptr = saturate_cast<int>(val);
else if( type == CV_32F )
*(float*)ptr = saturate_cast<float>(val);
else
*(double*)ptr = saturate_cast<double>(val);
}
return m;
}
static bool cvTsCheckSparse(const CvSparseMat* m1, const CvSparseMat* m2, double eps)
{
CvSparseMatIterator it1;
CvSparseNode* node1;
int depth = CV_MAT_DEPTH(m1->type);
if( m1->heap->active_count != m2->heap->active_count ||
m1->dims != m2->dims || CV_MAT_TYPE(m1->type) != CV_MAT_TYPE(m2->type) )
return false;
for( node1 = cvInitSparseMatIterator( m1, &it1 );
node1 != 0; node1 = cvGetNextSparseNode( &it1 ))
{
uchar* v1 = (uchar*)CV_NODE_VAL(m1,node1);
uchar* v2 = cvPtrND( m2, CV_NODE_IDX(m1,node1), 0, 0, &node1->hashval );
if( !v2 )
return false;
if( depth == CV_8U || depth == CV_8S )
{
if( *v1 != *v2 )
return false;
}
else if( depth == CV_16U || depth == CV_16S )
{
if( *(ushort*)v1 != *(ushort*)v2 )
return false;
}
else if( depth == CV_32S )
{
if( *(int*)v1 != *(int*)v2 )
return false;
}
else if( depth == CV_32F )
{
if( fabs(*(float*)v1 - *(float*)v2) > eps*(fabs(*(float*)v2) + 1) )
return false;
}
else if( fabs(*(double*)v1 - *(double*)v2) > eps*(fabs(*(double*)v2) + 1) )
return false;
}
return true;
}
class Core_IOTest : public cvtest::BaseTest
{
public:
2014-01-18 05:30:29 +08:00
Core_IOTest() { }
protected:
void run(int)
{
double ranges[][2] = {{0, 256}, {-128, 128}, {0, 65536}, {-32768, 32768},
{-1000000, 1000000}, {-10, 10}, {-10, 10}};
RNG& rng = ts->get_rng();
RNG rng0;
int progress = 0;
MemStorage storage(cvCreateMemStorage(0));
const char * suffixs[3] = {".yml", ".xml", ".json" };
test_case_count = 6;
for( int idx = 0; idx < test_case_count; idx++ )
{
ts->update_context( this, idx, false );
progress = update_progress( progress, idx, test_case_count, 0 );
cvClearMemStorage(storage);
bool mem = (idx % test_case_count) >= (test_case_count >> 1);
string filename = tempfile(suffixs[idx % (test_case_count >> 1)]);
FileStorage fs(filename, FileStorage::WRITE + (mem ? FileStorage::MEMORY : 0));
int test_int = (int)cvtest::randInt(rng);
double test_real = (cvtest::randInt(rng)%2?1:-1)*exp(cvtest::randReal(rng)*18-9);
string test_string = "vw wv23424rt\"&amp;&lt;&gt;&amp;&apos;@#$@$%$%&%IJUKYILFD@#$@%$&*&() ";
int depth = cvtest::randInt(rng) % (CV_64F+1);
int cn = cvtest::randInt(rng) % 4 + 1;
Mat test_mat(cvtest::randInt(rng)%30+1, cvtest::randInt(rng)%30+1, CV_MAKETYPE(depth, cn));
rng0.fill(test_mat, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
if( depth >= CV_32F )
{
exp(test_mat, test_mat);
Mat test_mat_scale(test_mat.size(), test_mat.type());
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
multiply(test_mat, test_mat_scale, test_mat);
}
CvSeq* seq = cvCreateSeq(test_mat.type(), (int)sizeof(CvSeq),
(int)test_mat.elemSize(), storage);
cvSeqPushMulti(seq, test_mat.ptr(), test_mat.cols*test_mat.rows);
CvGraph* graph = cvCreateGraph( CV_ORIENTED_GRAPH,
sizeof(CvGraph), sizeof(CvGraphVtx),
sizeof(CvGraphEdge), storage );
int edges[][2] = {{0,1},{1,2},{2,0},{0,3},{3,4},{4,1}};
int i, vcount = 5, ecount = 6;
for( i = 0; i < vcount; i++ )
cvGraphAddVtx(graph);
for( i = 0; i < ecount; i++ )
{
CvGraphEdge* edge;
cvGraphAddEdge(graph, edges[i][0], edges[i][1], 0, &edge);
edge->weight = (float)(i+1);
}
depth = cvtest::randInt(rng) % (CV_64F+1);
cn = cvtest::randInt(rng) % 4 + 1;
int sz[] = {
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
};
MatND test_mat_nd(3, sz, CV_MAKETYPE(depth, cn));
rng0.fill(test_mat_nd, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
if( depth >= CV_32F )
{
exp(test_mat_nd, test_mat_nd);
MatND test_mat_scale(test_mat_nd.dims, test_mat_nd.size, test_mat_nd.type());
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
multiply(test_mat_nd, test_mat_scale, test_mat_nd);
}
int ssz[] = {
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
};
SparseMat test_sparse_mat = cvTsGetRandomSparseMat(4, ssz, cvtest::randInt(rng)%(CV_64F+1),
cvtest::randInt(rng) % 10000, 0, 100, rng);
fs << "test_int" << test_int << "test_real" << test_real << "test_string" << test_string;
fs << "test_mat" << test_mat;
fs << "test_mat_nd" << test_mat_nd;
fs << "test_sparse_mat" << test_sparse_mat;
fs << "test_list" << "[" << 0.0000000000001 << 2 << CV_PI << -3435345 << "2-502 2-029 3egegeg" <<
"{:" << "month" << 12 << "day" << 31 << "year" << 1969 << "}" << "]";
fs << "test_map" << "{" << "x" << 1 << "y" << 2 << "width" << 100 << "height" << 200 << "lbp" << "[:";
const uchar arr[] = {0, 1, 1, 0, 1, 1, 0, 1};
fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0])));
fs << "]" << "}";
cvWriteComment(*fs, "test comment", 0);
fs.writeObj("test_seq", seq);
fs.writeObj("test_graph",graph);
CvGraph* graph2 = (CvGraph*)cvClone(graph);
string content = fs.releaseAndGetString();
if(!fs.open(mem ? content : filename, FileStorage::READ + (mem ? FileStorage::MEMORY : 0)))
{
ts->printf( cvtest::TS::LOG, "filename %s can not be read\n", !mem ? filename.c_str() : content.c_str());
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
return;
}
int real_int = (int)fs["test_int"];
double real_real = (double)fs["test_real"];
String real_string = (String)fs["test_string"];
if( real_int != test_int ||
fabs(real_real - test_real) > DBL_EPSILON*(fabs(test_real)+1) ||
real_string != test_string )
{
ts->printf( cvtest::TS::LOG, "the read scalars are not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvMat* m = (CvMat*)fs["test_mat"].readObj();
CvMat _test_mat = test_mat;
double max_diff = 0;
CvMat stub1, _test_stub1;
cvReshape(m, &stub1, 1, 0);
cvReshape(&_test_mat, &_test_stub1, 1, 0);
vector<int> pt;
if( !m || !CV_IS_MAT(m) || m->rows != test_mat.rows || m->cols != test_mat.cols ||
2013-03-29 01:01:12 +08:00
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "the read matrix is not correct: (%.20g vs %.20g) at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
if( m && CV_IS_MAT(m))
cvReleaseMat(&m);
CvMatND* m_nd = (CvMatND*)fs["test_mat_nd"].readObj();
CvMatND _test_mat_nd = test_mat_nd;
if( !m_nd || !CV_IS_MATND(m_nd) )
{
ts->printf( cvtest::TS::LOG, "the read nd-matrix is not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvMat stub, _test_stub;
cvGetMat(m_nd, &stub, 0, 1);
cvGetMat(&_test_mat_nd, &_test_stub, 0, 1);
cvReshape(&stub, &stub1, 1, 0);
cvReshape(&_test_stub, &_test_stub1, 1, 0);
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
2013-03-29 01:01:12 +08:00
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "readObj method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
MatND mat_nd2;
fs["test_mat_nd"] >> mat_nd2;
CvMatND m_nd2 = mat_nd2;
cvGetMat(&m_nd2, &stub, 0, 1);
cvReshape(&stub, &stub1, 1, 0);
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
2013-03-29 01:01:12 +08:00
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "C++ method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[1], pt[0]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
cvRelease((void**)&m_nd);
Ptr<CvSparseMat> m_s((CvSparseMat*)fs["test_sparse_mat"].readObj());
Ptr<CvSparseMat> _test_sparse_(cvCreateSparseMat(test_sparse_mat));
Ptr<CvSparseMat> _test_sparse((CvSparseMat*)cvClone(_test_sparse_));
SparseMat m_s2;
fs["test_sparse_mat"] >> m_s2;
Ptr<CvSparseMat> _m_s2(cvCreateSparseMat(m_s2));
if( !m_s || !CV_IS_SPARSE_MAT(m_s) ||
!cvTsCheckSparse(m_s, _test_sparse, 0) ||
!cvTsCheckSparse(_m_s2, _test_sparse, 0))
{
ts->printf( cvtest::TS::LOG, "the read sparse matrix is not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
FileNode tl = fs["test_list"];
if( tl.type() != FileNode::SEQ || tl.size() != 6 ||
fabs((double)tl[0] - 0.0000000000001) >= DBL_EPSILON ||
(int)tl[1] != 2 ||
fabs((double)tl[2] - CV_PI) >= DBL_EPSILON ||
(int)tl[3] != -3435345 ||
(String)tl[4] != "2-502 2-029 3egegeg" ||
tl[5].type() != FileNode::MAP || tl[5].size() != 3 ||
(int)tl[5]["month"] != 12 ||
(int)tl[5]["day"] != 31 ||
(int)tl[5]["year"] != 1969 )
{
ts->printf( cvtest::TS::LOG, "the test list is incorrect\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
FileNode tm = fs["test_map"];
FileNode tm_lbp = tm["lbp"];
int real_x = (int)tm["x"];
int real_y = (int)tm["y"];
int real_width = (int)tm["width"];
int real_height = (int)tm["height"];
int real_lbp_val = 0;
FileNodeIterator it;
it = tm_lbp.begin();
real_lbp_val |= (int)*it << 0;
++it;
real_lbp_val |= (int)*it << 1;
it++;
real_lbp_val |= (int)*it << 2;
it += 1;
real_lbp_val |= (int)*it << 3;
FileNodeIterator it2(it);
it2 += 4;
real_lbp_val |= (int)*it2 << 7;
--it2;
real_lbp_val |= (int)*it2 << 6;
it2--;
real_lbp_val |= (int)*it2 << 5;
it2 -= 1;
real_lbp_val |= (int)*it2 << 4;
it2 += -1;
CV_Assert( it == it2 );
if( tm.type() != FileNode::MAP || tm.size() != 5 ||
real_x != 1 ||
real_y != 2 ||
real_width != 100 ||
real_height != 200 ||
tm_lbp.type() != FileNode::SEQ ||
tm_lbp.size() != 8 ||
real_lbp_val != 0xb6 )
{
ts->printf( cvtest::TS::LOG, "the test map is incorrect\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvGraph* graph3 = (CvGraph*)fs["test_graph"].readObj();
if(graph2->active_count != vcount || graph3->active_count != vcount ||
graph2->edges->active_count != ecount || graph3->edges->active_count != ecount)
{
ts->printf( cvtest::TS::LOG, "the cloned or read graph have wrong number of vertices or edges\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
for( i = 0; i < ecount; i++ )
{
CvGraphEdge* edge2 = cvFindGraphEdge(graph2, edges[i][0], edges[i][1]);
CvGraphEdge* edge3 = cvFindGraphEdge(graph3, edges[i][0], edges[i][1]);
if( !edge2 || edge2->weight != (float)(i+1) ||
!edge3 || edge3->weight != (float)(i+1) )
{
ts->printf( cvtest::TS::LOG, "the cloned or read graph do not have the edge (%d, %d)\n", edges[i][0], edges[i][1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
}
fs.release();
if( !mem )
remove(filename.c_str());
}
}
};
TEST(Core_InputOutput, write_read_consistency) { Core_IOTest test; test.safe_run(); }
extern void testFormatter();
struct UserDefinedType
{
int a;
float b;
};
static inline bool operator==(const UserDefinedType &x,
const UserDefinedType &y) {
return (x.a == y.a) && (x.b == y.b);
}
static inline void write(FileStorage &fs,
const String&,
const UserDefinedType &value)
{
fs << "{:" << "a" << value.a << "b" << value.b << "}";
}
static inline void read(const FileNode& node,
UserDefinedType& value,
const UserDefinedType& default_value
= UserDefinedType()) {
if(node.empty())
{
value = default_value;
}
else
{
node["a"] >> value.a;
node["b"] >> value.b;
}
}
class CV_MiscIOTest : public cvtest::BaseTest
{
public:
CV_MiscIOTest() {}
~CV_MiscIOTest() {}
protected:
void run(int)
{
const char * suffix[3] = {
".yml",
".xml",
".json"
};
for ( size_t i = 0u; i < 3u; i++ )
{
try
{
string fname = cv::tempfile(suffix[i]);
vector<int> mi, mi2, mi3, mi4;
vector<Mat> mv, mv2, mv3, mv4;
vector<UserDefinedType> vudt, vudt2, vudt3, vudt4;
Mat m(10, 9, CV_32F);
Mat empty;
UserDefinedType udt = { 8, 3.3f };
randu(m, 0, 1);
mi3.push_back(5);
mv3.push_back(m);
vudt3.push_back(udt);
Point_<float> p1(1.1f, 2.2f), op1;
Point3i p2(3, 4, 5), op2;
Size s1(6, 7), os1;
Complex<int> c1(9, 10), oc1;
Rect r1(11, 12, 13, 14), or1;
Vec<int, 5> v1(15, 16, 17, 18, 19), ov1;
Scalar sc1(20.0, 21.1, 22.2, 23.3), osc1;
Range g1(7, 8), og1;
FileStorage fs(fname, FileStorage::WRITE);
fs << "mi" << mi;
fs << "mv" << mv;
fs << "mi3" << mi3;
fs << "mv3" << mv3;
fs << "vudt" << vudt;
fs << "vudt3" << vudt3;
fs << "empty" << empty;
fs << "p1" << p1;
fs << "p2" << p2;
fs << "s1" << s1;
fs << "c1" << c1;
fs << "r1" << r1;
fs << "v1" << v1;
fs << "sc1" << sc1;
fs << "g1" << g1;
fs.release();
fs.open(fname, FileStorage::READ);
fs["mi"] >> mi2;
fs["mv"] >> mv2;
fs["mi3"] >> mi4;
fs["mv3"] >> mv4;
fs["vudt"] >> vudt2;
fs["vudt3"] >> vudt4;
fs["empty"] >> empty;
fs["p1"] >> op1;
fs["p2"] >> op2;
fs["s1"] >> os1;
fs["c1"] >> oc1;
fs["r1"] >> or1;
fs["v1"] >> ov1;
fs["sc1"] >> osc1;
fs["g1"] >> og1;
CV_Assert( mi2.empty() );
CV_Assert( mv2.empty() );
CV_Assert( cvtest::norm(Mat(mi3), Mat(mi4), CV_C) == 0 );
CV_Assert( mv4.size() == 1 );
double n = cvtest::norm(mv3[0], mv4[0], CV_C);
CV_Assert( vudt2.empty() );
CV_Assert( vudt3 == vudt4 );
CV_Assert( n == 0 );
CV_Assert( op1 == p1 );
CV_Assert( op2 == p2 );
CV_Assert( os1 == s1 );
CV_Assert( oc1 == c1 );
CV_Assert( or1 == r1 );
CV_Assert( ov1 == v1 );
CV_Assert( osc1 == sc1 );
CV_Assert( og1 == g1 );
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
}
};
TEST(Core_InputOutput, misc) { CV_MiscIOTest test; test.safe_run(); }
/*class CV_BigMatrixIOTest : public cvtest::BaseTest
{
public:
CV_BigMatrixIOTest() {}
~CV_BigMatrixIOTest() {}
protected:
void run(int)
{
try
{
RNG& rng = theRNG();
int N = 1000, M = 1200000;
Mat mat(M, N, CV_32F);
rng.fill(mat, RNG::UNIFORM, 0, 1);
FileStorage fs(cv::tempfile(".xml"), FileStorage::WRITE);
fs << "mat" << mat;
fs.release();
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
};
TEST(Core_InputOutput, huge) { CV_BigMatrixIOTest test; test.safe_run(); }
*/
2013-04-10 23:36:39 +08:00
TEST(Core_globbing, accuracy)
2013-03-10 01:10:45 +08:00
{
std::string patternLena = cvtest::TS::ptr()->get_data_path() + "lena*.*";
std::string patternLenaPng = cvtest::TS::ptr()->get_data_path() + "lena.png";
std::vector<String> lenas, pngLenas;
2013-03-10 01:10:45 +08:00
cv::glob(patternLena, lenas, true);
cv::glob(patternLenaPng, pngLenas, true);
ASSERT_GT(lenas.size(), pngLenas.size());
for (size_t i = 0; i < pngLenas.size(); ++i)
{
ASSERT_NE(std::find(lenas.begin(), lenas.end(), pngLenas[i]), lenas.end());
}
2013-03-29 22:48:06 +08:00
}
TEST(Core_InputOutput, FileStorage)
{
std::string file = cv::tempfile(".xml");
cv::FileStorage f(file, cv::FileStorage::WRITE);
char arr[66];
sprintf(arr, "sprintf is hell %d", 666);
EXPECT_NO_THROW(f << arr);
}
TEST(Core_InputOutput, FileStorageKey)
{
cv::FileStorage f("dummy.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
EXPECT_NO_THROW(f << "key1" << "value1");
EXPECT_NO_THROW(f << "_key2" << "value2");
EXPECT_NO_THROW(f << "key_3" << "value3");
const std::string expected = "%YAML:1.0\n---\nkey1: value1\n_key2: value2\nkey_3: value3\n";
ASSERT_STREQ(f.releaseAndGetString().c_str(), expected.c_str());
}
TEST(Core_InputOutput, FileStorageSpaces)
{
cv::FileStorage f("dummy.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
const int valueCount = 5;
std::string values[5] = { "", " ", " ", " a", " some string" };
for (size_t i = 0; i < valueCount; i++) {
EXPECT_NO_THROW(f << cv::format("key%d", i) << values[i]);
}
cv::FileStorage f2(f.releaseAndGetString(), cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::string valuesRead[valueCount];
for (size_t i = 0; i < valueCount; i++) {
EXPECT_NO_THROW(f2[cv::format("key%d", i)] >> valuesRead[i]);
ASSERT_STREQ(values[i].c_str(), valuesRead[i].c_str());
}
}
struct data_t
{
typedef uchar u;
typedef char b;
typedef ushort w;
typedef short s;
typedef int i;
typedef float f;
typedef double d;
/*0x00*/ u u1 ;u u2 ; i i1 ;
/*0x08*/ i i2 ;i i3 ;
/*0x10*/ d d1 ;
/*0x18*/ d d2 ;
/*0x20*/ i i4 ;i required_alignment_field_for_linux32;
/*
* OpenCV persistence.cpp stuff expects: sizeof(data_t) = alignSize(36, sizeof(largest type = double)) = 40
* Some compilers on some archs returns sizeof(data_t) = 36 due struct packaging UB
*/
static inline const char * signature() {
if (sizeof(data_t) != 40)
{
printf("sizeof(data_t)=%d, u1=%p u2=%p i1=%p i2=%p i3=%p d1=%p d2=%p i4=%p\n", (int)sizeof(data_t),
&(((data_t*)0)->u1),
&(((data_t*)0)->u2),
&(((data_t*)0)->i1),
&(((data_t*)0)->i2),
&(((data_t*)0)->i3),
&(((data_t*)0)->d1),
&(((data_t*)0)->d2),
&(((data_t*)0)->i4)
);
}
CV_Assert(sizeof(data_t) == 40);
CV_Assert((size_t)&(((data_t*)0)->u1) == 0x0);
CV_Assert((size_t)&(((data_t*)0)->u2) == 0x1);
CV_Assert((size_t)&(((data_t*)0)->i1) == 0x4);
CV_Assert((size_t)&(((data_t*)0)->i2) == 0x8);
CV_Assert((size_t)&(((data_t*)0)->i3) == 0xc);
CV_Assert((size_t)&(((data_t*)0)->d1) == 0x10);
CV_Assert((size_t)&(((data_t*)0)->d2) == 0x18);
CV_Assert((size_t)&(((data_t*)0)->i4) == 0x20);
return "2u3i2di";
}
};
TEST(Core_InputOutput, filestorage_base64_basic)
{
char const * filenames[] = {
"core_io_base64_basic_test.yml",
"core_io_base64_basic_test.xml",
"core_io_base64_basic_test.json",
0
2016-06-24 23:41:40 +08:00
};
for (char const ** ptr = filenames; *ptr; ptr++)
{
char const * name = *ptr;
std::vector<data_t> rawdata;
cv::Mat _em_out, _em_in;
cv::Mat _2d_out, _2d_in;
cv::Mat _nd_out, _nd_in;
cv::Mat _rd_out(64, 64, CV_64FC1), _rd_in;
bool no_type_id = true;
{ /* init */
/* a normal mat */
_2d_out = cv::Mat(100, 100, CV_8UC3, cvScalar(1U, 2U, 127U));
for (int i = 0; i < _2d_out.rows; ++i)
for (int j = 0; j < _2d_out.cols; ++j)
_2d_out.at<cv::Vec3b>(i, j)[1] = (i + j) % 256;
/* a 4d mat */
const int Size[] = {4, 4, 4, 4};
cv::Mat _4d(4, Size, CV_64FC4, cvScalar(0.888, 0.111, 0.666, 0.444));
const cv::Range ranges[] = {
cv::Range(0, 2),
cv::Range(0, 2),
cv::Range(1, 2),
cv::Range(0, 2) };
_nd_out = _4d(ranges);
/* a random mat */
cv::randu(_rd_out, cv::Scalar(0.0), cv::Scalar(1.0));
/* raw data */
for (int i = 0; i < 1000; i++) {
data_t tmp;
tmp.u1 = 1;
tmp.u2 = 2;
tmp.i1 = 1;
tmp.i2 = 2;
tmp.i3 = 3;
tmp.d1 = 0.1;
tmp.d2 = 0.2;
tmp.i4 = i;
rawdata.push_back(tmp);
}
}
{ /* write */
cv::FileStorage fs(name, cv::FileStorage::WRITE_BASE64);
fs << "normal_2d_mat" << _2d_out;
fs << "normal_nd_mat" << _nd_out;
fs << "empty_2d_mat" << _em_out;
fs << "random_mat" << _rd_out;
cvStartWriteStruct( *fs, "rawdata", CV_NODE_SEQ | CV_NODE_FLOW, "binary" );
for (int i = 0; i < 10; i++)
cvWriteRawDataBase64(*fs, rawdata.data() + i * 100, 100, data_t::signature());
cvEndWriteStruct( *fs );
fs.release();
}
{ /* read */
cv::FileStorage fs(name, cv::FileStorage::READ);
/* mat */
fs["empty_2d_mat"] >> _em_in;
fs["normal_2d_mat"] >> _2d_in;
fs["normal_nd_mat"] >> _nd_in;
fs["random_mat"] >> _rd_in;
if ( !fs["empty_2d_mat"]["type_id"].empty() ||
!fs["normal_2d_mat"]["type_id"].empty() ||
!fs["normal_nd_mat"]["type_id"].empty() ||
!fs[ "random_mat"]["type_id"].empty() )
no_type_id = false;
/* raw data */
std::vector<data_t>(1000).swap(rawdata);
cvReadRawData(*fs, fs["rawdata"].node, rawdata.data(), data_t::signature());
fs.release();
}
int errors = 0;
for (int i = 0; i < 1000; i++)
{
EXPECT_EQ((int)rawdata[i].u1, 1);
EXPECT_EQ((int)rawdata[i].u2, 2);
EXPECT_EQ((int)rawdata[i].i1, 1);
EXPECT_EQ((int)rawdata[i].i2, 2);
EXPECT_EQ((int)rawdata[i].i3, 3);
EXPECT_EQ(rawdata[i].d1, 0.1);
EXPECT_EQ(rawdata[i].d2, 0.2);
EXPECT_EQ((int)rawdata[i].i4, i);
if (::testing::Test::HasNonfatalFailure())
{
printf("i = %d\n", i);
errors++;
}
if (errors >= 3)
break;
}
EXPECT_TRUE(no_type_id);
EXPECT_EQ(_em_in.rows , _em_out.rows);
EXPECT_EQ(_em_in.cols , _em_out.cols);
EXPECT_EQ(_em_in.depth(), _em_out.depth());
EXPECT_TRUE(_em_in.empty());
EXPECT_EQ(_2d_in.rows , _2d_out.rows);
EXPECT_EQ(_2d_in.cols , _2d_out.cols);
EXPECT_EQ(_2d_in.dims , _2d_out.dims);
EXPECT_EQ(_2d_in.depth(), _2d_out.depth());
errors = 0;
for(int i = 0; i < _2d_out.rows; ++i)
{
for (int j = 0; j < _2d_out.cols; ++j)
{
EXPECT_EQ(_2d_in.at<cv::Vec3b>(i, j), _2d_out.at<cv::Vec3b>(i, j));
if (::testing::Test::HasNonfatalFailure())
{
printf("i = %d, j = %d\n", i, j);
errors++;
}
if (errors >= 3)
{
i = _2d_out.rows;
break;
}
}
}
EXPECT_EQ(_nd_in.rows , _nd_out.rows);
EXPECT_EQ(_nd_in.cols , _nd_out.cols);
EXPECT_EQ(_nd_in.dims , _nd_out.dims);
EXPECT_EQ(_nd_in.depth(), _nd_out.depth());
EXPECT_EQ(cv::countNonZero(cv::mean(_nd_in != _nd_out)), 0);
EXPECT_EQ(_rd_in.rows , _rd_out.rows);
EXPECT_EQ(_rd_in.cols , _rd_out.cols);
EXPECT_EQ(_rd_in.dims , _rd_out.dims);
EXPECT_EQ(_rd_in.depth(), _rd_out.depth());
EXPECT_EQ(cv::countNonZero(cv::mean(_rd_in != _rd_out)), 0);
remove(name);
}
}
TEST(Core_InputOutput, filestorage_base64_valid_call)
{
char const * filenames[] = {
"core_io_base64_other_test.yml",
"core_io_base64_other_test.xml",
"core_io_base64_other_test.json",
"core_io_base64_other_test.yml?base64",
"core_io_base64_other_test.xml?base64",
"core_io_base64_other_test.json?base64",
0
};
char const * real_name[] = {
"core_io_base64_other_test.yml",
"core_io_base64_other_test.xml",
"core_io_base64_other_test.json",
"core_io_base64_other_test.yml",
"core_io_base64_other_test.xml",
"core_io_base64_other_test.json",
0
};
std::vector<int> rawdata(10, static_cast<int>(0x00010203));
cv::String str_out = "test_string";
for (char const ** ptr = filenames; *ptr; ptr++)
{
char const * name = *ptr;
EXPECT_NO_THROW(
{
cv::FileStorage fs(name, cv::FileStorage::WRITE_BASE64);
cvStartWriteStruct(*fs, "manydata", CV_NODE_SEQ);
cvStartWriteStruct(*fs, 0, CV_NODE_SEQ | CV_NODE_FLOW);
for (int i = 0; i < 10; i++)
cvWriteRawData(*fs, rawdata.data(), static_cast<int>(rawdata.size()), "i");
cvEndWriteStruct(*fs);
cvWriteString(*fs, 0, str_out.c_str(), 1);
cvEndWriteStruct(*fs);
fs.release();
});
{
cv::FileStorage fs(name, cv::FileStorage::READ);
std::vector<int> data_in(rawdata.size());
fs["manydata"][0].readRaw("i", (uchar *)data_in.data(), data_in.size());
EXPECT_TRUE(fs["manydata"][0].isSeq());
EXPECT_TRUE(std::equal(rawdata.begin(), rawdata.end(), data_in.begin()));
cv::String str_in;
fs["manydata"][1] >> str_in;
EXPECT_TRUE(fs["manydata"][1].isString());
EXPECT_EQ(str_in, str_out);
fs.release();
}
EXPECT_NO_THROW(
{
cv::FileStorage fs(name, cv::FileStorage::WRITE);
cvStartWriteStruct(*fs, "manydata", CV_NODE_SEQ);
cvWriteString(*fs, 0, str_out.c_str(), 1);
cvStartWriteStruct(*fs, 0, CV_NODE_SEQ | CV_NODE_FLOW, "binary");
for (int i = 0; i < 10; i++)
cvWriteRawData(*fs, rawdata.data(), static_cast<int>(rawdata.size()), "i");
cvEndWriteStruct(*fs);
cvEndWriteStruct(*fs);
fs.release();
});
{
cv::FileStorage fs(name, cv::FileStorage::READ);
cv::String str_in;
fs["manydata"][0] >> str_in;
EXPECT_TRUE(fs["manydata"][0].isString());
EXPECT_EQ(str_in, str_out);
std::vector<int> data_in(rawdata.size());
fs["manydata"][1].readRaw("i", (uchar *)data_in.data(), data_in.size());
EXPECT_TRUE(fs["manydata"][1].isSeq());
EXPECT_TRUE(std::equal(rawdata.begin(), rawdata.end(), data_in.begin()));
fs.release();
}
remove(real_name[ptr - filenames]);
}
}
TEST(Core_InputOutput, filestorage_base64_invalid_call)
{
char const * filenames[] = {
"core_io_base64_other_test.yml",
"core_io_base64_other_test.xml",
"core_io_base64_other_test.json",
0
};
for (char const ** ptr = filenames; *ptr; ptr++)
{
char const * name = *ptr;
EXPECT_ANY_THROW({
cv::FileStorage fs(name, cv::FileStorage::WRITE);
cvStartWriteStruct(*fs, "rawdata", CV_NODE_SEQ, "binary");
cvStartWriteStruct(*fs, 0, CV_NODE_SEQ | CV_NODE_FLOW);
});
EXPECT_ANY_THROW({
cv::FileStorage fs(name, cv::FileStorage::WRITE);
cvStartWriteStruct(*fs, "rawdata", CV_NODE_SEQ);
cvStartWriteStruct(*fs, 0, CV_NODE_SEQ | CV_NODE_FLOW);
cvWriteRawDataBase64(*fs, name, 1, "u");
});
remove(name);
}
}
2016-07-20 17:25:30 +08:00
TEST(Core_InputOutput, filestorage_yml_vec2i)
{
const std::string file_name = "vec2i.yml";
cv::Vec2i vec(2, 1), ovec;
/* write */
{
cv::FileStorage fs(file_name, cv::FileStorage::WRITE);
fs << "prms0" << "{" << "vec0" << vec << "}";
fs.release();
}
/* read */
{
cv::FileStorage fs(file_name, cv::FileStorage::READ);
fs["prms0"]["vec0"] >> ovec;
fs.release();
}
EXPECT_EQ(vec(0), ovec(0));
EXPECT_EQ(vec(1), ovec(1));
remove(file_name.c_str());
}
TEST(Core_InputOutput, filestorage_json_comment)
{
String mem_str =
"{ /* comment */\n"
" \"key\": \"value\"\n"
" /************\n"
" * multiline comment\n"
" ************/\n"
" // 233\n"
" // \n"
"}\n"
;
String str;
EXPECT_NO_THROW(
{
cv::FileStorage fs(mem_str, cv::FileStorage::READ | cv::FileStorage::MEMORY);
fs["key"] >> str;
fs.release();
});
EXPECT_EQ(str, String("value"));
}
2016-11-01 17:24:30 +08:00
TEST(Core_InputOutput, filestorage_utf8_bom)
{
EXPECT_NO_THROW(
{
String content ="\xEF\xBB\xBF<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
cv::FileStorage fs(content, cv::FileStorage::READ | cv::FileStorage::MEMORY);
fs.release();
});
EXPECT_NO_THROW(
{
String content ="\xEF\xBB\xBF%YAML:1.0\n";
cv::FileStorage fs(content, cv::FileStorage::READ | cv::FileStorage::MEMORY);
fs.release();
});
EXPECT_NO_THROW(
{
String content ="\xEF\xBB\xBF{\n}\n";
cv::FileStorage fs(content, cv::FileStorage::READ | cv::FileStorage::MEMORY);
fs.release();
});
}
TEST(Core_InputOutput, filestorage_vec_vec_io)
{
std::vector<std::vector<Mat> > outputMats(3);
for(size_t i = 0; i < outputMats.size(); i++)
{
outputMats[i].resize(i+1);
for(size_t j = 0; j < outputMats[i].size(); j++)
{
outputMats[i][j] = Mat::eye((int)i + 1, (int)i + 1, CV_8U);
}
}
String fileName = "vec_test.";
std::vector<String> formats;
formats.push_back("xml");
formats.push_back("yml");
formats.push_back("json");
for(size_t i = 0; i < formats.size(); i++)
{
FileStorage writer(fileName + formats[i], FileStorage::WRITE);
writer << "vecVecMat" << outputMats;
writer.release();
FileStorage reader(fileName + formats[i], FileStorage::READ);
std::vector<std::vector<Mat> > testMats;
reader["vecVecMat"] >> testMats;
ASSERT_EQ(testMats.size(), testMats.size());
for(size_t j = 0; j < testMats.size(); j++)
{
ASSERT_EQ(testMats[j].size(), outputMats[j].size());
for(size_t k = 0; k < testMats[j].size(); k++)
{
ASSERT_TRUE(norm(outputMats[j][k] - testMats[j][k], NORM_INF) == 0);
}
}
reader.release();
remove((fileName + formats[i]).c_str());
}
}
TEST(Core_InputOutput, filestorage_yaml_advanvced_type_heading)
{
String content = "%YAML:1.0\n cameraMatrix: !<tag:yaml.org,2002:opencv-matrix>\n"
" rows: 1\n"
" cols: 1\n"
" dt: d\n"
" data: [ 1. ]";
cv::FileStorage fs(content, cv::FileStorage::READ | cv::FileStorage::MEMORY);
cv::Mat inputMatrix;
cv::Mat actualMatrix = cv::Mat::eye(1, 1, CV_64F);
fs["cameraMatrix"] >> inputMatrix;
ASSERT_EQ(cv::norm(inputMatrix, actualMatrix, NORM_INF), 0.);
}
2017-03-03 18:58:55 +08:00
TEST(Core_InputOutput, filestorage_keypoints_vec_vec_io)
{
vector<vector<KeyPoint> > kptsVec;
vector<KeyPoint> kpts;
kpts.push_back(KeyPoint(0, 0, 1.1f));
kpts.push_back(KeyPoint(1, 1, 1.1f));
kptsVec.push_back(kpts);
kpts.clear();
kpts.push_back(KeyPoint(0, 0, 1.1f, 10.1f, 34.5f, 10, 11));
kptsVec.push_back(kpts);
FileStorage writer("", FileStorage::WRITE + FileStorage::MEMORY + FileStorage::FORMAT_XML);
writer << "keypoints" << kptsVec;
String content = writer.releaseAndGetString();
FileStorage reader(content, FileStorage::READ + FileStorage::MEMORY);
vector<vector<KeyPoint> > readKptsVec;
reader["keypoints"] >> readKptsVec;
ASSERT_EQ(kptsVec.size(), readKptsVec.size());
for(size_t i = 0; i < kptsVec.size(); i++)
{
ASSERT_EQ(kptsVec[i].size(), readKptsVec[i].size());
for(size_t j = 0; j < kptsVec[i].size(); j++)
{
ASSERT_FLOAT_EQ(kptsVec[i][j].pt.x, readKptsVec[i][j].pt.x);
ASSERT_FLOAT_EQ(kptsVec[i][j].pt.y, readKptsVec[i][j].pt.y);
ASSERT_FLOAT_EQ(kptsVec[i][j].angle, readKptsVec[i][j].angle);
ASSERT_FLOAT_EQ(kptsVec[i][j].size, readKptsVec[i][j].size);
ASSERT_FLOAT_EQ(kptsVec[i][j].response, readKptsVec[i][j].response);
ASSERT_EQ(kptsVec[i][j].octave, readKptsVec[i][j].octave);
ASSERT_EQ(kptsVec[i][j].class_id, readKptsVec[i][j].class_id);
}
}
}
2017-03-01 00:34:26 +08:00
TEST(Core_InputOutput, FileStorage_DMatch)
{
cv::FileStorage fs("dmatch.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::DMatch d(1, 2, 3, -1.5f);
EXPECT_NO_THROW(fs << "d" << d);
cv::String fs_result = fs.releaseAndGetString();
2017-04-21 22:07:46 +08:00
#if defined _MSC_VER && _MSC_VER <= 1700 /* MSVC 2012 and older */
EXPECT_STREQ(fs_result.c_str(), "%YAML:1.0\n---\nd: [ 1, 2, 3, -1.5000000000000000e+000 ]\n");
#else
2017-03-01 00:34:26 +08:00
EXPECT_STREQ(fs_result.c_str(), "%YAML:1.0\n---\nd: [ 1, 2, 3, -1.5000000000000000e+00 ]\n");
2017-04-21 22:07:46 +08:00
#endif
2017-03-01 00:34:26 +08:00
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
cv::DMatch d_read;
ASSERT_NO_THROW(fs_read["d"] >> d_read);
EXPECT_EQ(d.queryIdx, d_read.queryIdx);
EXPECT_EQ(d.trainIdx, d_read.trainIdx);
EXPECT_EQ(d.imgIdx, d_read.imgIdx);
EXPECT_EQ(d.distance, d_read.distance);
}
TEST(Core_InputOutput, FileStorage_DMatch_vector)
{
cv::FileStorage fs("dmatch.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::DMatch d1(1, 2, 3, -1.5f);
cv::DMatch d2(2, 3, 4, 1.5f);
cv::DMatch d3(3, 2, 1, 0.5f);
std::vector<cv::DMatch> dv;
dv.push_back(d1);
dv.push_back(d2);
dv.push_back(d3);
EXPECT_NO_THROW(fs << "dv" << dv);
cv::String fs_result = fs.releaseAndGetString();
2017-04-21 22:07:46 +08:00
#if defined _MSC_VER && _MSC_VER <= 1700 /* MSVC 2012 and older */
EXPECT_STREQ(fs_result.c_str(),
"%YAML:1.0\n"
"---\n"
"dv:\n"
" - [ 1, 2, 3, -1.5000000000000000e+000 ]\n"
" - [ 2, 3, 4, 1.5000000000000000e+000 ]\n"
" - [ 3, 2, 1, 5.0000000000000000e-001 ]\n"
2017-04-21 22:07:46 +08:00
);
#else
2017-03-01 00:34:26 +08:00
EXPECT_STREQ(fs_result.c_str(),
"%YAML:1.0\n"
"---\n"
"dv:\n"
" - [ 1, 2, 3, -1.5000000000000000e+00 ]\n"
" - [ 2, 3, 4, 1.5000000000000000e+00 ]\n"
" - [ 3, 2, 1, 5.0000000000000000e-01 ]\n"
2017-03-01 00:34:26 +08:00
);
2017-04-21 22:07:46 +08:00
#endif
2017-03-01 00:34:26 +08:00
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector<cv::DMatch> dv_read;
ASSERT_NO_THROW(fs_read["dv"] >> dv_read);
ASSERT_EQ(dv.size(), dv_read.size());
for (size_t i = 0; i < dv.size(); i++)
{
EXPECT_EQ(dv[i].queryIdx, dv_read[i].queryIdx);
EXPECT_EQ(dv[i].trainIdx, dv_read[i].trainIdx);
EXPECT_EQ(dv[i].imgIdx, dv_read[i].imgIdx);
EXPECT_EQ(dv[i].distance, dv_read[i].distance);
}
}
TEST(Core_InputOutput, FileStorage_DMatch_vector_vector)
{
cv::FileStorage fs("dmatch.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::DMatch d1(1, 2, 3, -1.5f);
cv::DMatch d2(2, 3, 4, 1.5f);
cv::DMatch d3(3, 2, 1, 0.5f);
std::vector<cv::DMatch> dv1;
dv1.push_back(d1);
dv1.push_back(d2);
dv1.push_back(d3);
std::vector<cv::DMatch> dv2;
dv2.push_back(d3);
dv2.push_back(d1);
std::vector< std::vector<cv::DMatch> > dvv;
dvv.push_back(dv1);
dvv.push_back(dv2);
EXPECT_NO_THROW(fs << "dvv" << dvv);
cv::String fs_result = fs.releaseAndGetString();
#ifndef OPENCV_TRAITS_ENABLE_DEPRECATED
2017-04-21 22:07:46 +08:00
#if defined _MSC_VER && _MSC_VER <= 1700 /* MSVC 2012 and older */
EXPECT_STREQ(fs_result.c_str(),
"%YAML:1.0\n"
"---\n"
"dvv:\n"
" -\n"
" - [ 1, 2, 3, -1.5000000000000000e+000 ]\n"
" - [ 2, 3, 4, 1.5000000000000000e+000 ]\n"
" - [ 3, 2, 1, 5.0000000000000000e-001 ]\n"
" -\n"
" - [ 3, 2, 1, 5.0000000000000000e-001 ]\n"
" - [ 1, 2, 3, -1.5000000000000000e+000 ]\n"
2017-04-21 22:07:46 +08:00
);
#else
2017-03-01 00:34:26 +08:00
EXPECT_STREQ(fs_result.c_str(),
"%YAML:1.0\n"
"---\n"
"dvv:\n"
" -\n"
" - [ 1, 2, 3, -1.5000000000000000e+00 ]\n"
" - [ 2, 3, 4, 1.5000000000000000e+00 ]\n"
" - [ 3, 2, 1, 5.0000000000000000e-01 ]\n"
" -\n"
" - [ 3, 2, 1, 5.0000000000000000e-01 ]\n"
" - [ 1, 2, 3, -1.5000000000000000e+00 ]\n"
2017-03-01 00:34:26 +08:00
);
2017-04-21 22:07:46 +08:00
#endif
#endif // OPENCV_TRAITS_ENABLE_DEPRECATED
2017-03-01 00:34:26 +08:00
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector< std::vector<cv::DMatch> > dvv_read;
ASSERT_NO_THROW(fs_read["dvv"] >> dvv_read);
ASSERT_EQ(dvv.size(), dvv_read.size());
for (size_t j = 0; j < dvv.size(); j++)
{
const std::vector<cv::DMatch>& dv = dvv[j];
const std::vector<cv::DMatch>& dv_read = dvv_read[j];
ASSERT_EQ(dvv.size(), dvv_read.size());
for (size_t i = 0; i < dv.size(); i++)
{
EXPECT_EQ(dv[i].queryIdx, dv_read[i].queryIdx);
EXPECT_EQ(dv[i].trainIdx, dv_read[i].trainIdx);
EXPECT_EQ(dv[i].imgIdx, dv_read[i].imgIdx);
EXPECT_EQ(dv[i].distance, dv_read[i].distance);
}
}
}
TEST(Core_InputOutput, FileStorage_KeyPoint)
{
cv::FileStorage fs("keypoint.xml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::KeyPoint k(Point2f(1, 2), 16, 0, 100, 1, -1);
EXPECT_NO_THROW(fs << "k" << k);
cv::String fs_result = fs.releaseAndGetString();
EXPECT_STREQ(fs_result.c_str(),
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<k>\n"
" 1. 2. 16. 0. 100. 1 -1</k>\n"
"</opencv_storage>\n"
);
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
cv::KeyPoint k_read;
ASSERT_NO_THROW(fs_read["k"] >> k_read);
EXPECT_EQ(k.pt, k_read.pt);
EXPECT_EQ(k.size, k_read.size);
EXPECT_EQ(k.angle, k_read.angle);
EXPECT_EQ(k.response, k_read.response);
EXPECT_EQ(k.octave, k_read.octave);
EXPECT_EQ(k.class_id, k_read.class_id);
}
TEST(Core_InputOutput, FileStorage_KeyPoint_vector)
{
cv::FileStorage fs("keypoint.xml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::KeyPoint k1(Point2f(1, 2), 16, 0, 100, 1, -1);
cv::KeyPoint k2(Point2f(2, 3), 16, 45, 100, 1, -1);
cv::KeyPoint k3(Point2f(1, 2), 16, 90, 100, 1, -1);
std::vector<cv::KeyPoint> kv;
kv.push_back(k1);
kv.push_back(k2);
kv.push_back(k3);
EXPECT_NO_THROW(fs << "kv" << kv);
cv::String fs_result = fs.releaseAndGetString();
EXPECT_STREQ(fs_result.c_str(),
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<kv>\n"
" <_>\n"
" 1. 2. 16. 0. 100. 1 -1</_>\n"
" <_>\n"
" 2. 3. 16. 45. 100. 1 -1</_>\n"
" <_>\n"
" 1. 2. 16. 90. 100. 1 -1</_></kv>\n"
"</opencv_storage>\n"
);
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector<cv::KeyPoint> kv_read;
ASSERT_NO_THROW(fs_read["kv"] >> kv_read);
ASSERT_EQ(kv.size(), kv_read.size());
for (size_t i = 0; i < kv.size(); i++)
{
EXPECT_EQ(kv[i].pt, kv_read[i].pt);
EXPECT_EQ(kv[i].size, kv_read[i].size);
EXPECT_EQ(kv[i].angle, kv_read[i].angle);
EXPECT_EQ(kv[i].response, kv_read[i].response);
EXPECT_EQ(kv[i].octave, kv_read[i].octave);
EXPECT_EQ(kv[i].class_id, kv_read[i].class_id);
}
}
TEST(Core_InputOutput, FileStorage_KeyPoint_vector_vector)
{
cv::FileStorage fs("keypoint.xml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
cv::KeyPoint k1(Point2f(1, 2), 16, 0, 100, 1, -1);
cv::KeyPoint k2(Point2f(2, 3), 16, 45, 100, 1, -1);
cv::KeyPoint k3(Point2f(1, 2), 16, 90, 100, 1, -1);
std::vector<cv::KeyPoint> kv1;
kv1.push_back(k1);
kv1.push_back(k2);
kv1.push_back(k3);
std::vector<cv::KeyPoint> kv2;
kv2.push_back(k3);
kv2.push_back(k1);
std::vector< std::vector<cv::KeyPoint> > kvv;
kvv.push_back(kv1);
kvv.push_back(kv2);
EXPECT_NO_THROW(fs << "kvv" << kvv);
cv::String fs_result = fs.releaseAndGetString();
#ifndef OPENCV_TRAITS_ENABLE_DEPRECATED
EXPECT_STREQ(fs_result.c_str(),
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<kvv>\n"
" <_>\n"
" <_>\n"
" 1. 2. 16. 0. 100. 1 -1</_>\n"
" <_>\n"
" 2. 3. 16. 45. 100. 1 -1</_>\n"
" <_>\n"
" 1. 2. 16. 90. 100. 1 -1</_></_>\n"
" <_>\n"
" <_>\n"
" 1. 2. 16. 90. 100. 1 -1</_>\n"
" <_>\n"
" 1. 2. 16. 0. 100. 1 -1</_></_></kvv>\n"
"</opencv_storage>\n"
);
#endif //OPENCV_TRAITS_ENABLE_DEPRECATED
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector< std::vector<cv::KeyPoint> > kvv_read;
ASSERT_NO_THROW(fs_read["kvv"] >> kvv_read);
ASSERT_EQ(kvv.size(), kvv_read.size());
for (size_t j = 0; j < kvv.size(); j++)
{
const std::vector<cv::KeyPoint>& kv = kvv[j];
const std::vector<cv::KeyPoint>& kv_read = kvv_read[j];
ASSERT_EQ(kvv.size(), kvv_read.size());
for (size_t i = 0; i < kv.size(); i++)
{
EXPECT_EQ(kv[i].pt, kv_read[i].pt);
EXPECT_EQ(kv[i].size, kv_read[i].size);
EXPECT_EQ(kv[i].angle, kv_read[i].angle);
EXPECT_EQ(kv[i].response, kv_read[i].response);
EXPECT_EQ(kv[i].octave, kv_read[i].octave);
EXPECT_EQ(kv[i].class_id, kv_read[i].class_id);
}
}
}
#ifdef CV__LEGACY_PERSISTENCE
TEST(Core_InputOutput, FileStorage_LEGACY_DMatch_vector)
{
cv::DMatch d1(1, 2, 3, -1.5f);
cv::DMatch d2(2, 3, 4, 1.5f);
cv::DMatch d3(3, 2, 1, 0.5f);
std::vector<cv::DMatch> dv;
dv.push_back(d1);
dv.push_back(d2);
dv.push_back(d3);
String fs_result =
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<dv>\n"
" 1 2 3 -1.5000000000000000e+00 2 3 4 1.5000000000000000e+00 3 2 1\n"
" 5.0000000000000000e-01</dv>\n"
"</opencv_storage>\n"
;
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector<cv::DMatch> dv_read;
ASSERT_NO_THROW(fs_read["dv"] >> dv_read);
ASSERT_EQ(dv.size(), dv_read.size());
for (size_t i = 0; i < dv.size(); i++)
{
EXPECT_EQ(dv[i].queryIdx, dv_read[i].queryIdx);
EXPECT_EQ(dv[i].trainIdx, dv_read[i].trainIdx);
EXPECT_EQ(dv[i].imgIdx, dv_read[i].imgIdx);
EXPECT_EQ(dv[i].distance, dv_read[i].distance);
}
}
TEST(Core_InputOutput, FileStorage_LEGACY_KeyPoint_vector)
{
cv::KeyPoint k1(Point2f(1, 2), 16, 0, 100, 1, -1);
cv::KeyPoint k2(Point2f(2, 3), 16, 45, 100, 1, -1);
cv::KeyPoint k3(Point2f(1, 2), 16, 90, 100, 1, -1);
std::vector<cv::KeyPoint> kv;
kv.push_back(k1);
kv.push_back(k2);
kv.push_back(k3);
cv::String fs_result =
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<kv>\n"
" 1. 2. 16. 0. 100. 1 -1\n"
" 2. 3. 16. 45. 100. 1 -1\n"
" 1. 2. 16. 90. 100. 1 -1</kv>\n"
"</opencv_storage>\n"
;
cv::FileStorage fs_read(fs_result, cv::FileStorage::READ | cv::FileStorage::MEMORY);
std::vector<cv::KeyPoint> kv_read;
ASSERT_NO_THROW(fs_read["kv"] >> kv_read);
ASSERT_EQ(kv.size(), kv_read.size());
for (size_t i = 0; i < kv.size(); i++)
{
EXPECT_EQ(kv[i].pt, kv_read[i].pt);
EXPECT_EQ(kv[i].size, kv_read[i].size);
EXPECT_EQ(kv[i].angle, kv_read[i].angle);
EXPECT_EQ(kv[i].response, kv_read[i].response);
EXPECT_EQ(kv[i].octave, kv_read[i].octave);
EXPECT_EQ(kv[i].class_id, kv_read[i].class_id);
}
}
#endif
TEST(Core_InputOutput, FileStorage_format_xml)
{
FileStorage fs;
fs.open("opencv_storage.xml", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_XML, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_xml_gz)
{
FileStorage fs;
fs.open("opencv_storage.xml.gz", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_XML, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_json)
{
FileStorage fs;
fs.open("opencv_storage.json", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_JSON, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_json_gz)
{
FileStorage fs;
fs.open("opencv_storage.json.gz", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_JSON, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_yaml)
{
FileStorage fs;
fs.open("opencv_storage.yaml", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_YAML, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_yaml_gz)
{
FileStorage fs;
fs.open("opencv_storage.yaml.gz", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_YAML, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_yml)
{
FileStorage fs;
fs.open("opencv_storage.yml", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_YAML, fs.getFormat());
}
TEST(Core_InputOutput, FileStorage_format_yml_gz)
{
FileStorage fs;
fs.open("opencv_storage.yml.gz", FileStorage::WRITE | FileStorage::MEMORY);
EXPECT_EQ(FileStorage::FORMAT_YAML, fs.getFormat());
}
2017-07-25 18:39:32 +08:00
TEST(Core_InputOutput, FileStorage_json_named_nodes)
{
std::string test =
"{ "
"\"int_value\": -324,"
"\"map_value\": {"
"\"str_value\": \"mystring\""
"},"
"\"array\": [0.2, 0.1]"
"}";
FileStorage fs(test, FileStorage::READ | FileStorage::MEMORY);
ASSERT_TRUE(fs["int_value"].isNamed());
ASSERT_TRUE(fs["map_value"].isNamed());
ASSERT_TRUE(fs["map_value"]["str_value"].isNamed());
ASSERT_TRUE(fs["array"].isNamed());
ASSERT_FALSE(fs["array"][0].isNamed());
ASSERT_FALSE(fs["array"][1].isNamed());
ASSERT_EQ(fs["int_value"].name(), "int_value");
ASSERT_EQ(fs["map_value"].name(), "map_value");
ASSERT_EQ(fs["map_value"]["str_value"].name(), "str_value");
ASSERT_EQ(fs["array"].name(), "array");
fs.release();
}
2017-07-26 16:08:09 +08:00
TEST(Core_InputOutput, FileStorage_json_bool)
{
std::string test =
"{ "
"\"str_true\": \"true\","
"\"map_value\": {"
"\"int_value\": -33333,\n"
"\"bool_true\": true,"
"\"str_false\": \"false\","
"},"
"\"bool_false\": false, \n"
"\"array\": [0.1, 0.2]"
"}";
FileStorage fs(test, FileStorage::READ | FileStorage::MEMORY);
ASSERT_TRUE(fs["str_true"].isString());
ASSERT_TRUE(fs["map_value"]["bool_true"].isInt());
ASSERT_TRUE(fs["map_value"]["str_false"].isString());
ASSERT_TRUE(fs["bool_false"].isInt());
ASSERT_EQ((std::string)fs["str_true"], "true");
ASSERT_EQ((int)fs["map_value"]["bool_true"], 1);
ASSERT_EQ((std::string)fs["map_value"]["str_false"], "false");
ASSERT_EQ((int)fs["bool_false"], 0);
fs.release();
}
2017-08-07 20:50:30 +08:00
TEST(Core_InputOutput, FileStorage_free_file_after_exception)
{
const std::string fileName = "test.yml";
const std::string content = "%YAML:1.0\n cameraMatrix;:: !<tag:yaml.org,2002:opencv-matrix>\n";
fstream testFile;
testFile.open(fileName.c_str(), std::fstream::out);
2017-08-07 20:50:30 +08:00
if(!testFile.is_open()) FAIL();
testFile << content;
testFile.close();
try
{
FileStorage fs(fileName, FileStorage::READ + FileStorage::FORMAT_YAML);
FAIL();
2017-08-07 20:50:30 +08:00
}
catch (const std::exception&)
{
}
ASSERT_EQ(std::remove(fileName.c_str()), 0);
2017-08-07 20:50:30 +08:00
}