mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 15:08:08 +08:00
248 lines
9.0 KiB
C++
248 lines
9.0 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "../precomp.hpp"
|
||
|
#include "layers_common.hpp"
|
||
|
#include <opencv2/dnn/shape_utils.hpp>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace dnn
|
||
|
{
|
||
|
|
||
|
static void computeShapeByReshapeMask(const MatShape &srcShape,
|
||
|
const MatShape &maskShape,
|
||
|
Range srcRange /*= Range::all()*/,
|
||
|
MatShape& dstShape)
|
||
|
{
|
||
|
int srcShapeSize = (int)srcShape.size();
|
||
|
int maskShapeSize = (int)maskShape.size();
|
||
|
|
||
|
if (srcRange == Range::all())
|
||
|
srcRange = Range(0, srcShapeSize);
|
||
|
else
|
||
|
{
|
||
|
int sz = srcRange.size();
|
||
|
srcRange.start = clamp(srcRange.start, srcShapeSize);
|
||
|
srcRange.end = srcRange.end == INT_MAX ? srcShapeSize : srcRange.start + sz;
|
||
|
}
|
||
|
|
||
|
bool explicitMask = !maskShape.empty(); // All mask values are positive.
|
||
|
for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i)
|
||
|
{
|
||
|
explicitMask = maskShape[i] > 0;
|
||
|
}
|
||
|
// Working range of source shape is a range where area(src) == area(mask).
|
||
|
if (explicitMask)
|
||
|
{
|
||
|
int maskTotal = total(maskShape);
|
||
|
for (int i = srcRange.start + 1; i < srcRange.end; ++i)
|
||
|
{
|
||
|
if (total(srcShape, i, srcRange.end) != maskTotal)
|
||
|
{
|
||
|
srcRange.start = i - 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal);
|
||
|
}
|
||
|
|
||
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize);
|
||
|
int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize;
|
||
|
dstShape.resize(dstShapeSize);
|
||
|
|
||
|
std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin());
|
||
|
std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize);
|
||
|
|
||
|
int inferDim = -1;
|
||
|
for (int i = 0; i < maskShapeSize; i++)
|
||
|
{
|
||
|
if (maskShape[i] > 0)
|
||
|
{
|
||
|
dstShape[srcRange.start + i] = maskShape[i];
|
||
|
}
|
||
|
else if (maskShape[i] == 0)
|
||
|
{
|
||
|
if (srcRange.start + i >= srcShapeSize)
|
||
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i));
|
||
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i];
|
||
|
}
|
||
|
else if (maskShape[i] == -1)
|
||
|
{
|
||
|
if (inferDim != -1)
|
||
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)");
|
||
|
inferDim = srcRange.start + i;
|
||
|
dstShape[inferDim] = 1;
|
||
|
}
|
||
|
else
|
||
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1");
|
||
|
}
|
||
|
|
||
|
size_t srcTotal = total(srcShape);
|
||
|
size_t dstTotal = total(dstShape);
|
||
|
|
||
|
if (inferDim != -1)
|
||
|
{
|
||
|
if (srcTotal % dstTotal != 0)
|
||
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1");
|
||
|
|
||
|
dstShape[inferDim] = (int)(srcTotal / dstTotal);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CV_Assert(srcTotal == dstTotal);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class ReshapeLayerImpl : public ReshapeLayer
|
||
|
{
|
||
|
public:
|
||
|
ReshapeLayerImpl(const LayerParams& params):
|
||
|
performReordering(false)
|
||
|
{
|
||
|
setParamsFrom(params);
|
||
|
int axis = params.get<int>("axis", 0);
|
||
|
int numAxes = params.get<int>("num_axes", -1);
|
||
|
enableReordering = params.get<bool>("reorder_dims", false);
|
||
|
CV_Assert(numAxes >= -1);
|
||
|
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
|
||
|
|
||
|
newShapeDesc.clear();
|
||
|
if (params.has("dim"))
|
||
|
{
|
||
|
const DictValue ¶mShape = params.get("dim");
|
||
|
int i, dims = paramShape.size();
|
||
|
newShapeDesc.resize(dims);
|
||
|
for (i = 0; i < dims; i++)
|
||
|
newShapeDesc[i] = paramShape.get<int>(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||
|
const int requiredOutputs,
|
||
|
std::vector<MatShape> &outputs,
|
||
|
std::vector<MatShape> &internals) const
|
||
|
{
|
||
|
outputs.clear();
|
||
|
|
||
|
for (size_t i = 0; i < inputs.size(); i++)
|
||
|
{
|
||
|
outputs.push_back(MatShape());
|
||
|
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||
|
}
|
||
|
internals = outputs;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
|
||
|
{
|
||
|
CV_Assert(inputs.size());
|
||
|
CV_Assert(outputs.size());
|
||
|
Mat srcBlob = *inputs[0];
|
||
|
int dims = srcBlob.dims;
|
||
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[0]);
|
||
|
|
||
|
// input.total() == output.total(). So if reordering is require,
|
||
|
// one of the sizes will be are not equal.
|
||
|
// Example where reordering is require: from 1x128x4x4 to 1x2048
|
||
|
// Example where reordering is NOT require: from 1x1024x1x1 to 1x1024.
|
||
|
bool reorderingRequire = false;
|
||
|
const int minDims = min(dims, (int)outShape.size());
|
||
|
for (int i = 0; !reorderingRequire && i < minDims; ++i)
|
||
|
reorderingRequire = inputShape[i] != outShape[i];
|
||
|
performReordering = enableReordering && reorderingRequire;
|
||
|
}
|
||
|
|
||
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
||
|
{
|
||
|
for (size_t i = 0; i < inputs.size(); i++)
|
||
|
{
|
||
|
Mat srcBlob = *inputs[i];
|
||
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]);
|
||
|
|
||
|
if (performReordering)
|
||
|
{
|
||
|
float *dstData = internals[i].ptr<float>();
|
||
|
const float *srcData = srcBlob.ptr<float>();
|
||
|
|
||
|
int num = inputShape[0], channels = inputShape[1], height = inputShape[2], width = inputShape[3];
|
||
|
int total = num*channels*height*width;
|
||
|
for(int i_n = 0; i_n < num; i_n++) {
|
||
|
for(int i_c = 0; i_c < channels; i_c++) {
|
||
|
for(int i_h = 0; i_h < height; i_h++) {
|
||
|
for(int i_w = 0; i_w < width; i_w++) {
|
||
|
int src_i = channels*height*width*i_n + height*width*i_c + width*i_h + i_w;
|
||
|
int dst_i = channels*height*width*i_n + i_c + channels*width*i_h + channels*i_w;
|
||
|
|
||
|
CV_Assert(dst_i < total);
|
||
|
CV_Assert(src_i < total);
|
||
|
|
||
|
dstData[dst_i] = srcData[src_i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
internals[i].copyTo(outputs[i]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (outputs[i].data != srcBlob.data)
|
||
|
srcBlob.reshape(1, outShape).copyTo(outputs[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
std::vector<std::vector<int> > outShapes;
|
||
|
bool enableReordering, performReordering;
|
||
|
};
|
||
|
|
||
|
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params)
|
||
|
{
|
||
|
return Ptr<ReshapeLayer>(new ReshapeLayerImpl(params));
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|