opencv/modules/features2d/src/keypoint.cpp

238 lines
7.5 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
2011-05-31 22:24:45 +08:00
size_t KeyPoint::hash() const
{
size_t _Val = 2166136261U, scale = 16777619U;
Cv32suf u;
u.f = pt.x; _Val = (scale * _Val) ^ u.u;
u.f = pt.y; _Val = (scale * _Val) ^ u.u;
u.f = size; _Val = (scale * _Val) ^ u.u;
u.f = angle; _Val = (scale * _Val) ^ u.u;
u.f = response; _Val = (scale * _Val) ^ u.u;
_Val = (scale * _Val) ^ ((size_t) octave);
_Val = (scale * _Val) ^ ((size_t) class_id);
return _Val;
}
void write(FileStorage& fs, const string& objname, const vector<KeyPoint>& keypoints)
{
WriteStructContext ws(fs, objname, CV_NODE_SEQ + CV_NODE_FLOW);
int i, npoints = (int)keypoints.size();
for( i = 0; i < npoints; i++ )
{
const KeyPoint& kpt = keypoints[i];
write(fs, kpt.pt.x);
write(fs, kpt.pt.y);
write(fs, kpt.size);
write(fs, kpt.angle);
write(fs, kpt.response);
write(fs, kpt.octave);
write(fs, kpt.class_id);
}
}
void read(const FileNode& node, vector<KeyPoint>& keypoints)
{
keypoints.resize(0);
FileNodeIterator it = node.begin(), it_end = node.end();
for( ; it != it_end; )
{
KeyPoint kpt;
it >> kpt.pt.x >> kpt.pt.y >> kpt.size >> kpt.angle >> kpt.response >> kpt.octave >> kpt.class_id;
keypoints.push_back(kpt);
}
}
void KeyPoint::convert(const std::vector<KeyPoint>& keypoints, std::vector<Point2f>& points2f,
const vector<int>& keypointIndexes)
{
if( keypointIndexes.empty() )
{
points2f.resize( keypoints.size() );
for( size_t i = 0; i < keypoints.size(); i++ )
points2f[i] = keypoints[i].pt;
}
else
{
points2f.resize( keypointIndexes.size() );
for( size_t i = 0; i < keypointIndexes.size(); i++ )
{
int idx = keypointIndexes[i];
if( idx >= 0 )
points2f[i] = keypoints[idx].pt;
else
{
CV_Error( CV_StsBadArg, "keypointIndexes has element < 0. TODO: process this case" );
//points2f[i] = Point2f(-1, -1);
}
}
}
}
void KeyPoint::convert( const std::vector<Point2f>& points2f, std::vector<KeyPoint>& keypoints,
float size, float response, int octave, int class_id )
{
for( size_t i = 0; i < points2f.size(); i++ )
keypoints[i] = KeyPoint(points2f[i], size, -1, response, octave, class_id);
}
float KeyPoint::overlap( const KeyPoint& kp1, const KeyPoint& kp2 )
{
float a = kp1.size * 0.5f;
float b = kp2.size * 0.5f;
float a_2 = a * a;
float b_2 = b * b;
Point2f p1 = kp1.pt;
Point2f p2 = kp2.pt;
float c = (float)norm( p1 - p2 );
float ovrl = 0.f;
// one circle is completely encovered by the other => no intersection points!
if( min( a, b ) + c <= max( a, b ) )
return min( a_2, b_2 ) / max( a_2, b_2 );
if( c < a + b ) // circles intersect
{
float c_2 = c * c;
float cosAlpha = ( b_2 + c_2 - a_2 ) / ( kp2.size * c );
float cosBeta = ( a_2 + c_2 - b_2 ) / ( kp1.size * c );
float alpha = acos( cosAlpha );
float beta = acos( cosBeta );
float sinAlpha = sin(alpha);
float sinBeta = sin(beta);
float segmentAreaA = a_2 * beta;
float segmentAreaB = b_2 * alpha;
float triangleAreaA = a_2 * sinBeta * cosBeta;
float triangleAreaB = b_2 * sinAlpha * cosAlpha;
float intersectionArea = segmentAreaA + segmentAreaB - triangleAreaA - triangleAreaB;
float unionArea = (a_2 + b_2) * (float)CV_PI - intersectionArea;
ovrl = intersectionArea / unionArea;
}
return ovrl;
}
struct RoiPredicate
{
RoiPredicate( const Rect& _r ) : r(_r)
{}
bool operator()( const KeyPoint& keyPt ) const
{
return !r.contains( keyPt.pt );
}
Rect r;
};
void KeyPointsFilter::runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize )
{
if( borderSize > 0)
{
keypoints.erase( remove_if(keypoints.begin(), keypoints.end(),
RoiPredicate(Rect(Point(borderSize, borderSize),
Point(imageSize.width - borderSize, imageSize.height - borderSize)))),
keypoints.end() );
}
}
struct SizePredicate
{
SizePredicate( float _minSize, float _maxSize ) : minSize(_minSize), maxSize(_maxSize)
{}
bool operator()( const KeyPoint& keyPt ) const
{
float size = keyPt.size;
return (size < minSize) || (size > maxSize);
}
float minSize, maxSize;
};
void KeyPointsFilter::runByKeypointSize( vector<KeyPoint>& keypoints, float minSize, float maxSize )
{
CV_Assert( minSize >= 0 );
CV_Assert( maxSize >= 0);
CV_Assert( minSize <= maxSize );
keypoints.erase( remove_if(keypoints.begin(), keypoints.end(), SizePredicate(minSize, maxSize)),
keypoints.end() );
}
2011-05-05 18:10:46 +08:00
class MaskPredicate
{
public:
MaskPredicate( const Mat& _mask ) : mask(_mask) {}
bool operator() (const KeyPoint& key_pt) const
{
return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0;
}
private:
const Mat mask;
};
void KeyPointsFilter::runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask )
{
if( mask.empty() )
return;
keypoints.erase(remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end());
}
}