2018-06-07 21:29:04 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include "../op_inf_engine.hpp"
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
|
2018-06-23 00:26:47 +08:00
|
|
|
class ResizeLayerImpl : public ResizeLayer
|
2018-06-07 21:29:04 +08:00
|
|
|
{
|
|
|
|
public:
|
2018-07-23 22:22:47 +08:00
|
|
|
ResizeLayerImpl(const LayerParams& params) : zoomFactorWidth(0), zoomFactorHeight(0), scaleWidth(0), scaleHeight(0)
|
2018-06-07 21:29:04 +08:00
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
outWidth = params.get<float>("width", 0);
|
|
|
|
outHeight = params.get<float>("height", 0);
|
|
|
|
if (params.has("zoom_factor"))
|
|
|
|
{
|
|
|
|
CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y"));
|
|
|
|
zoomFactorWidth = zoomFactorHeight = params.get<int>("zoom_factor");
|
|
|
|
}
|
|
|
|
else if (params.has("zoom_factor_x") || params.has("zoom_factor_y"))
|
|
|
|
{
|
|
|
|
CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y"));
|
|
|
|
zoomFactorWidth = params.get<int>("zoom_factor_x");
|
|
|
|
zoomFactorHeight = params.get<int>("zoom_factor_y");
|
|
|
|
}
|
|
|
|
interpolation = params.get<String>("interpolation");
|
|
|
|
CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
|
|
|
|
|
2018-08-24 19:47:32 +08:00
|
|
|
alignCorners = params.get<bool>("align_corners", false);
|
2018-06-07 21:29:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
|
|
{
|
2018-08-15 19:55:47 +08:00
|
|
|
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
|
2018-06-07 21:29:04 +08:00
|
|
|
outputs.resize(1, inputs[0]);
|
|
|
|
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
|
|
|
|
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
|
|
|
|
// We can work in-place (do nothing) if input shape == output shape.
|
|
|
|
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
|
|
{
|
2018-06-09 20:37:04 +08:00
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
|
|
|
return interpolation == "nearest" && preferableTarget != DNN_TARGET_MYRIAD;
|
|
|
|
else
|
|
|
|
return backendId == DNN_BACKEND_OPENCV;
|
2018-06-07 21:29:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
if (!outWidth && !outHeight)
|
|
|
|
{
|
|
|
|
outHeight = outputs[0].size[2];
|
|
|
|
outWidth = outputs[0].size[3];
|
|
|
|
}
|
2018-08-24 19:47:32 +08:00
|
|
|
if (alignCorners && outHeight > 1)
|
|
|
|
scaleHeight = static_cast<float>(inputs[0]->size[2] - 1) / (outHeight - 1);
|
|
|
|
else
|
|
|
|
scaleHeight = static_cast<float>(inputs[0]->size[2]) / outHeight;
|
|
|
|
|
|
|
|
if (alignCorners && outWidth > 1)
|
|
|
|
scaleWidth = static_cast<float>(inputs[0]->size[3] - 1) / (outWidth - 1);
|
|
|
|
else
|
|
|
|
scaleWidth = static_cast<float>(inputs[0]->size[3]) / outWidth;
|
2018-06-07 21:29:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3])
|
|
|
|
return;
|
|
|
|
|
|
|
|
Mat& inp = *inputs[0];
|
|
|
|
Mat& out = outputs[0];
|
|
|
|
if (interpolation == "nearest")
|
|
|
|
{
|
|
|
|
for (size_t n = 0; n < inputs[0]->size[0]; ++n)
|
|
|
|
{
|
|
|
|
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
|
|
|
|
{
|
|
|
|
resize(getPlane(inp, n, ch), getPlane(out, n, ch),
|
|
|
|
Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (interpolation == "bilinear")
|
|
|
|
{
|
|
|
|
const int inpHeight = inp.size[2];
|
|
|
|
const int inpWidth = inp.size[3];
|
|
|
|
const int inpSpatialSize = inpHeight * inpWidth;
|
|
|
|
const int outSpatialSize = outHeight * outWidth;
|
|
|
|
const int numPlanes = inp.size[0] * inp.size[1];
|
2018-08-15 19:55:47 +08:00
|
|
|
CV_Assert_N(inp.isContinuous(), out.isContinuous());
|
2018-06-07 21:29:04 +08:00
|
|
|
|
|
|
|
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight);
|
|
|
|
Mat outPlanes = out.reshape(1, numPlanes * outHeight);
|
|
|
|
for (int y = 0; y < outHeight; ++y)
|
|
|
|
{
|
2018-06-23 00:26:47 +08:00
|
|
|
float input_y = y * scaleHeight;
|
2018-06-07 21:29:04 +08:00
|
|
|
int y0 = static_cast<int>(input_y);
|
|
|
|
const float* inpData_row0 = inpPlanes.ptr<float>(y0);
|
|
|
|
const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1));
|
|
|
|
for (int x = 0; x < outWidth; ++x)
|
|
|
|
{
|
2018-06-23 00:26:47 +08:00
|
|
|
float input_x = x * scaleWidth;
|
2018-06-07 21:29:04 +08:00
|
|
|
int x0 = static_cast<int>(input_x);
|
|
|
|
int x1 = std::min(x0 + 1, inpWidth - 1);
|
|
|
|
|
|
|
|
float* outData = outPlanes.ptr<float>(y, x);
|
|
|
|
const float* inpData_row0_c = inpData_row0;
|
|
|
|
const float* inpData_row1_c = inpData_row1;
|
|
|
|
for (int c = 0; c < numPlanes; ++c)
|
|
|
|
{
|
|
|
|
*outData = inpData_row0_c[x0] +
|
|
|
|
(input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) +
|
|
|
|
(input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] +
|
|
|
|
(input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0]));
|
|
|
|
|
|
|
|
inpData_row0_c += inpSpatialSize;
|
|
|
|
inpData_row1_c += inpSpatialSize;
|
|
|
|
outData += outSpatialSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
InferenceEngine::LayerParams lp;
|
|
|
|
lp.name = name;
|
|
|
|
lp.type = "Resample";
|
|
|
|
lp.precision = InferenceEngine::Precision::FP32;
|
|
|
|
|
|
|
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
|
|
|
|
ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST";
|
|
|
|
ieLayer->params["antialias"] = "0";
|
|
|
|
ieLayer->params["width"] = cv::format("%d", outWidth);
|
|
|
|
ieLayer->params["height"] = cv::format("%d", outHeight);
|
|
|
|
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
2018-06-23 00:26:47 +08:00
|
|
|
protected:
|
2018-06-07 21:29:04 +08:00
|
|
|
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
|
|
|
|
String interpolation;
|
2018-06-23 00:26:47 +08:00
|
|
|
float scaleWidth, scaleHeight;
|
2018-08-24 19:47:32 +08:00
|
|
|
bool alignCorners;
|
2018-06-07 21:29:04 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<ResizeLayer>(new ResizeLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
2018-06-23 00:26:47 +08:00
|
|
|
class InterpLayerImpl CV_FINAL : public ResizeLayerImpl
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
InterpLayerImpl(const LayerParams& params) : ResizeLayerImpl(params) {}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
|
|
{
|
2018-08-15 19:55:47 +08:00
|
|
|
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
|
2018-06-23 00:26:47 +08:00
|
|
|
outputs.resize(1, inputs[0]);
|
|
|
|
outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1));
|
|
|
|
outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1));
|
|
|
|
// We can work in-place (do nothing) if input shape == output shape.
|
|
|
|
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
|
|
|
|
}
|
|
|
|
|
2018-06-27 21:34:36 +08:00
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE;
|
|
|
|
}
|
|
|
|
|
2018-06-23 00:26:47 +08:00
|
|
|
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
if (!outWidth && !outHeight)
|
|
|
|
{
|
|
|
|
outHeight = outputs[0].size[2];
|
|
|
|
outWidth = outputs[0].size[3];
|
|
|
|
}
|
|
|
|
int inpHeight = inputs[0]->size[2];
|
|
|
|
int inpWidth = inputs[0]->size[3];
|
|
|
|
scaleHeight = (outHeight > 1) ? (static_cast<float>(inpHeight - 1) / (outHeight - 1)) : 0.f;
|
|
|
|
scaleWidth = (outWidth > 1) ? (static_cast<float>(inpWidth - 1) / (outWidth - 1)) : 0.f;
|
|
|
|
}
|
2018-06-27 21:34:36 +08:00
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
|
|
{
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
InferenceEngine::LayerParams lp;
|
|
|
|
lp.name = name;
|
|
|
|
lp.type = "Interp";
|
|
|
|
lp.precision = InferenceEngine::Precision::FP32;
|
|
|
|
|
|
|
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
|
|
|
|
ieLayer->params["pad_beg"] = "0";
|
|
|
|
ieLayer->params["pad_end"] = "0";
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
2018-06-23 00:26:47 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<Layer> InterpLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
LayerParams lp(params);
|
|
|
|
lp.set("interpolation", "bilinear");
|
|
|
|
return Ptr<Layer>(new InterpLayerImpl(lp));
|
|
|
|
}
|
|
|
|
|
2018-06-07 21:29:04 +08:00
|
|
|
} // namespace dnn
|
|
|
|
} // namespace cv
|