opencv/modules/dnn/src/layers/scale_layer.cpp

266 lines
9.0 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Scale layer.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
{
namespace dnn
{
2018-03-15 21:16:56 +08:00
class ScaleLayerImpl CV_FINAL : public ScaleLayer
{
public:
ScaleLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
hasBias = params.get<bool>("bias_term", false);
axis = params.get<int>("axis", 1);
2018-05-28 23:13:32 +08:00
hasWeights = false;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
2018-03-15 21:16:56 +08:00
std::vector<MatShape> &internals) const CV_OVERRIDE
{
outputs.assign(1, inputs[0]);
return true;
}
2018-05-28 23:13:32 +08:00
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{
hasWeights = blobs.size() == 2 || (blobs.size() == 1 && !hasBias);
CV_Assert(inputs.size() == 2 && blobs.empty() || blobs.size() == (int)hasWeights + (int)hasBias);
}
2018-03-15 21:16:56 +08:00
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && axis == 1;
}
2018-03-15 21:16:56 +08:00
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
2018-03-15 21:16:56 +08:00
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
2017-06-28 19:46:58 +08:00
Mat &inpBlob = *inputs[0];
Mat &outBlob = outputs[0];
2018-05-28 23:13:32 +08:00
// There is a mode when we multiply a first blob by a second one
// instead of trainable weights.
Mat weights = blobs.empty() ? *inputs[1] : (hasWeights ? blobs[0] : Mat());
Mat bias = hasBias ? blobs.back().reshape(1, 1) : Mat();
if (!weights.empty())
weights = weights.reshape(1, 1);
MatShape inpShape = shape(inpBlob);
2018-05-28 23:13:32 +08:00
const int numWeights = !weights.empty() ? weights.total() : bias.total();
CV_Assert(numWeights != 0);
if (hasWeights && hasBias)
CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs");
int endAxis;
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
{
if (total(inpShape, axis, endAxis) == numWeights)
break;
}
CV_Assert(total(inpShape, axis, endAxis) == numWeights);
CV_Assert(!hasBias || numWeights == bias.total());
CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, "");
int numSlices = total(inpShape, 0, axis);
float* inpData = (float*)inpBlob.data;
float* outData = (float*)outBlob.data;
if (endAxis != inpBlob.dims)
{
2018-05-28 23:13:32 +08:00
float* weightsData = !weights.empty() ? (float*)weights.data : 0;
float* biasesData = hasBias ? (float*)bias.data : 0;
int spatialSize = total(inpShape, endAxis); // spatialSize != 1
for (int i = 0; i < numSlices; ++i)
{
for (int j = 0; j < numWeights; ++j)
{
2018-05-28 23:13:32 +08:00
float w = weightsData ? weightsData[j] : 1;
float b = biasesData ? biasesData[j] : 0;
Mat inpSlice(1, spatialSize, CV_32F, inpData);
Mat outSlice(1, spatialSize, CV_32F, outData);
inpSlice.convertTo(outSlice, CV_32F, w, b);
inpData += spatialSize;
outData += spatialSize;
}
}
}
else
{
for (int i = 0; i < numSlices; ++i)
{
2018-05-28 23:13:32 +08:00
Mat inpSlice(1, numWeights, CV_32F, inpData);
Mat outSlice(1, numWeights, CV_32F, outData);
if (!weights.empty())
{
multiply(inpSlice, weights, outSlice);
if (hasBias)
add(outSlice, bias, outSlice);
}
else if (hasBias)
add(inpSlice, bias, outSlice);
inpData += numWeights;
outData += numWeights;
}
}
}
2018-03-15 21:16:56 +08:00
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
2018-03-15 21:16:56 +08:00
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_HALIDE
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
// second case it will be a fusion.
Halide::Func attachHalide(const Halide::Expr& input)
{
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Var x("x"), y("y"), c("c"), n("n");
const int numChannels = blobs[0].total();
2018-05-28 23:13:32 +08:00
Halide::Expr topExpr = input;
if (hasWeights)
{
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
topExpr *= weights(c);
}
if (hasBias)
{
2018-05-28 23:13:32 +08:00
auto bias = wrapToHalideBuffer(blobs.back(), {numChannels});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return top;
}
#endif // HAVE_HALIDE
2018-03-15 21:16:56 +08:00
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "ScaleShift";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
2018-05-28 23:13:32 +08:00
CV_Assert(!blobs.empty());
2018-05-23 17:46:14 +08:00
const size_t numChannels = blobs[0].total();
2018-05-28 23:13:32 +08:00
if (hasWeights)
{
ieLayer->_weights = wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C);
}
else
{
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
{numChannels});
weights->allocate();
std::vector<float> ones(numChannels, 1);
weights->set(ones);
ieLayer->_weights = weights;
}
if (hasBias)
2018-05-28 23:13:32 +08:00
ieLayer->_biases = wrapToInfEngineBlob(blobs.back(), {numChannels}, InferenceEngine::Layout::C);
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
2018-03-15 21:16:56 +08:00
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
2018-02-13 17:07:56 +08:00
{
2018-05-28 23:13:32 +08:00
scale = hasWeights ? blobs[0] : Mat();
shift = hasBias ? blobs.back() : Mat();
2018-02-13 17:07:56 +08:00
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
2018-03-15 21:16:56 +08:00
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 2*total(inputs[i]);
}
return flops;
}
2018-05-28 23:13:32 +08:00
private:
bool hasWeights;
};
Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
{
return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
}
2018-05-28 23:13:32 +08:00
Ptr<Layer> ShiftLayer::create(const LayerParams& params)
{
LayerParams scaleParams;
scaleParams.name = params.name;
scaleParams.type = "Scale";
scaleParams.blobs = params.blobs;
scaleParams.set("bias_term", true);
scaleParams.set("axis", 0);
return Ptr<ScaleLayer>(new ScaleLayerImpl(scaleParams));
}
} // namespace dnn
} // namespace cv