opencv/modules/gpu/test/test_optflow.cpp

630 lines
19 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
//////////////////////////////////////////////////////
// BroxOpticalFlow
//#define BROX_DUMP
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(BroxOpticalFlow, Regression)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(frame0), loadMat(frame1), u, v);
std::string fname(cvtest::TS::ptr()->get_data_path());
if (devInfo.majorVersion() >= 2)
fname += "opticalflow/brox_optical_flow_cc20.bin";
else
fname += "opticalflow/brox_optical_flow.bin";
#ifndef BROX_DUMP
std::ifstream f(fname.c_str(), std::ios_base::binary);
int rows, cols;
f.read((char*) &rows, sizeof(rows));
f.read((char*) &cols, sizeof(cols));
cv::Mat u_gold(rows, cols, CV_32FC1);
for (int i = 0; i < u_gold.rows; ++i)
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
cv::Mat v_gold(rows, cols, CV_32FC1);
for (int i = 0; i < v_gold.rows; ++i)
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
EXPECT_MAT_NEAR(u_gold, u, 0);
EXPECT_MAT_NEAR(v_gold, v, 0);
#else
std::ofstream f(fname.c_str(), std::ios_base::binary);
f.write((char*) &u.rows, sizeof(u.rows));
f.write((char*) &u.cols, sizeof(u.cols));
cv::Mat h_u(u);
cv::Mat h_v(v);
for (int i = 0; i < u.rows; ++i)
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
for (int i = 0; i < v.rows; ++i)
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
#endif
}
GPU_TEST_P(BroxOpticalFlow, OpticalFlowNan)
{
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
ASSERT_FALSE(frame1.empty());
cv::Mat r_frame0, r_frame1;
cv::resize(frame0, r_frame0, cv::Size(1380,1000));
cv::resize(frame1, r_frame1, cv::Size(1380,1000));
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/);
cv::gpu::GpuMat u;
cv::gpu::GpuMat v;
brox(loadMat(r_frame0), loadMat(r_frame1), u, v);
cv::Mat h_u, h_v;
u.download(h_u);
v.download(h_v);
EXPECT_TRUE(cv::checkRange(h_u));
EXPECT_TRUE(cv::checkRange(h_v));
};
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
//////////////////////////////////////////////////////
// GoodFeaturesToTrack
namespace
{
IMPLEMENT_PARAM_CLASS(MinDistance, double)
}
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
{
cv::gpu::DeviceInfo devInfo;
double minDistance;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
minDistance = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
int maxCorners = 1000;
double qualityLevel = 0.01;
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
cv::gpu::GpuMat d_pts;
detector(loadMat(image), d_pts);
ASSERT_FALSE(d_pts.empty());
std::vector<cv::Point2f> pts(d_pts.cols);
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]);
d_pts.download(pts_mat);
std::vector<cv::Point2f> pts_gold;
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
ASSERT_EQ(pts_gold.size(), pts.size());
size_t mistmatch = 0;
for (size_t i = 0; i < pts.size(); ++i)
{
cv::Point2i a = pts_gold[i];
cv::Point2i b = pts[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
if (!eq)
++mistmatch;
}
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
ASSERT_LE(bad_ratio, 0.01);
}
GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners)
{
int maxCorners = 1000;
double qualityLevel = 0.01;
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2);
detector(src, corners);
ASSERT_TRUE(corners.empty());
}
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
ALL_DEVICES,
testing::Values(MinDistance(0.0), MinDistance(3.0))));
//////////////////////////////////////////////////////
// PyrLKOpticalFlow
namespace
{
IMPLEMENT_PARAM_CLASS(UseGray, bool)
}
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
{
cv::gpu::DeviceInfo devInfo;
bool useGray;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useGray = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(PyrLKOpticalFlow, Sparse)
{
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
std::vector<cv::Point2f> pts;
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
cv::gpu::GpuMat d_pts;
cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
d_pts.upload(pts_mat);
cv::gpu::PyrLKOpticalFlow pyrLK;
cv::gpu::GpuMat d_nextPts;
cv::gpu::GpuMat d_status;
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
d_nextPts.download(nextPts_mat);
std::vector<unsigned char> status(d_status.cols);
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
d_status.download(status_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
ASSERT_EQ(status_gold.size(), status.size());
size_t mistmatch = 0;
for (size_t i = 0; i < nextPts.size(); ++i)
{
cv::Point2i a = nextPts[i];
cv::Point2i b = nextPts_gold[i];
if (status[i] != status_gold[i])
{
++mistmatch;
continue;
}
if (status[i])
{
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
if (!eq)
++mistmatch;
}
}
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
ASSERT_LE(bad_ratio, 0.01);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(UseGray(true), UseGray(false))));
//////////////////////////////////////////////////////
// FarnebackOpticalFlow
namespace
{
IMPLEMENT_PARAM_CLASS(PyrScale, double)
IMPLEMENT_PARAM_CLASS(PolyN, int)
CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
}
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
{
cv::gpu::DeviceInfo devInfo;
double pyrScale;
int polyN;
int flags;
bool useInitFlow;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
pyrScale = GET_PARAM(1);
polyN = GET_PARAM(2);
flags = GET_PARAM(3);
useInitFlow = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(FarnebackOpticalFlow, Accuracy)
{
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;
cv::gpu::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::gpu::GpuMat d_flowx, d_flowy;
farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
cv::Mat flow;
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
}
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
ALL_DEVICES,
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
testing::Values(PolyN(5), PolyN(7)),
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
testing::Values(UseInitFlow(false), UseInitFlow(true))));
//////////////////////////////////////////////////////
// OpticalFlowDual_TVL1
PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
{
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
2013-03-29 15:36:36 +08:00
alg->set("medianFiltering", 1);
alg->set("innerIterations", 1);
alg->set("outerIterations", d_alg.iterations);
cv::Mat flow;
alg->calc(frame0, frame1, flow);
cv::Mat gold[2];
cv::split(flow, gold);
2013-03-29 15:36:36 +08:00
EXPECT_MAT_SIMILAR(gold[0], d_flowx, 4e-3);
EXPECT_MAT_SIMILAR(gold[1], d_flowy, 4e-3);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// OpticalFlowBM
namespace
{
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
cv::Mat& velx, cv::Mat& vely)
{
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
velx.create(sz, CV_32FC1);
vely.create(sz, CV_32FC1);
CvMat cvprev = prev;
CvMat cvcurr = curr;
CvMat cvvelx = velx;
CvMat cvvely = vely;
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
}
}
struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(OpticalFlowBM, Accuracy)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size block_size(16, 16);
cv::Size shift_size(1, 1);
cv::Size max_range(16, 16);
cv::gpu::GpuMat d_velx, d_vely, buf;
cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
block_size, shift_size, max_range, false,
d_velx, d_vely, buf);
cv::Mat velx, vely;
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
EXPECT_MAT_NEAR(velx, d_velx, 0);
EXPECT_MAT_NEAR(vely, d_vely, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
//////////////////////////////////////////////////////
// FastOpticalFlowBM
namespace
{
void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
{
velx.create(I0.size());
vely.create(I0.size());
int search_radius = search_window / 2;
int block_radius = block_window / 2;
for (int y = 0; y < I0.rows; ++y)
{
for (int x = 0; x < I0.cols; ++x)
{
int bestDist = std::numeric_limits<int>::max();
int bestDx = 0;
int bestDy = 0;
for (int dy = -search_radius; dy <= search_radius; ++dy)
{
for (int dx = -search_radius; dx <= search_radius; ++dx)
{
int dist = 0;
for (int by = -block_radius; by <= block_radius; ++by)
{
for (int bx = -block_radius; bx <= block_radius; ++bx)
{
int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
dist += std::abs(I0_val - I1_val);
}
}
if (dist < bestDist)
{
bestDist = dist;
bestDx = dx;
bestDy = dy;
}
}
}
velx(y, x) = (float) bestDx;
vely(y, x) = (float) bestDy;
}
}
}
double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
{
double sum = 0.0;
for (int y = 0; y < flow1.rows; ++y)
{
for (int x = 0; x < flow1.cols; ++x)
{
double diff = flow1(y, x) - flow2(y, x);
sum += diff * diff;
}
}
return std::sqrt(sum / flow1.size().area());
}
}
struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(FastOpticalFlowBM, Accuracy)
{
const double MAX_RMSE = 0.6;
int search_window = 15;
int block_window = 5;
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size smallSize(320, 240);
cv::Mat frame0_small;
cv::Mat frame1_small;
cv::resize(frame0, frame0_small, smallSize);
cv::resize(frame1, frame1_small, smallSize);
cv::gpu::GpuMat d_flowx;
cv::gpu::GpuMat d_flowy;
cv::gpu::FastOpticalFlowBM fastBM;
fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
cv::Mat_<float> flowx;
cv::Mat_<float> flowy;
FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
double err;
err = calc_rmse(flowx, cv::Mat(d_flowx));
EXPECT_LE(err, MAX_RMSE);
err = calc_rmse(flowy, cv::Mat(d_flowy));
EXPECT_LE(err, MAX_RMSE);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
#endif // HAVE_CUDA