2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2017-06-28 16:15:22 +08:00
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
2017-06-26 18:35:51 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class MVNLayerImpl : public MVNLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MVNLayerImpl(const LayerParams& params)
|
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
normVariance = params.get<bool>("normalize_variance", true);
|
|
|
|
acrossChannels = params.get<bool>("across_channels", false);
|
|
|
|
eps = params.get<double>("eps", 1e-9);
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
|
|
|
{
|
|
|
|
Mat &inpBlob = *inputs[inpIdx];
|
|
|
|
Mat &outBlob = outputs[inpIdx];
|
|
|
|
|
|
|
|
int splitDim = (acrossChannels) ? 1 : 2;
|
|
|
|
int i, newRows = 1;
|
|
|
|
for( i = 0; i < splitDim; i++ )
|
|
|
|
newRows *= inpBlob.size[i];
|
|
|
|
Mat inpMat = inpBlob.reshape(1, newRows);
|
|
|
|
Mat outMat = outBlob.reshape(1, newRows);
|
|
|
|
|
|
|
|
Scalar mean, dev;
|
|
|
|
for ( i = 0; i < newRows; i++)
|
|
|
|
{
|
|
|
|
Mat inpRow = inpMat.row(i);
|
|
|
|
Mat outRow = outMat.row(i);
|
|
|
|
|
|
|
|
cv::meanStdDev(inpRow, mean, (normVariance) ? dev : noArray());
|
|
|
|
double alpha = (normVariance) ? 1/(eps + dev[0]) : 1;
|
|
|
|
inpRow.convertTo(outRow, outRow.type(), alpha, -mean[0] * alpha);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
(void)outputs; // suppress unused variable warning
|
|
|
|
long flops = 0;
|
|
|
|
for(int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += 6*total(inputs[i]) + 3*total(inputs[i], 0, normVariance ? 2 : 1);
|
|
|
|
}
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<MVNLayer> MVNLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<MVNLayer>(new MVNLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|