2019-03-31 16:51:09 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
# include "opencv2/ts.hpp"
# include "opencv2/ts/ts_perf.hpp"
# include "opencv2/core/utility.hpp"
# include "opencv2/core/ocl.hpp"
# include "opencv2/dnn.hpp"
# include "test_common.hpp"
# include <opencv2/core/utils/configuration.private.hpp>
# include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
2019-04-01 23:11:10 +08:00
CV__DNN_INLINE_NS_BEGIN
2019-03-31 16:51:09 +08:00
void PrintTo ( const cv : : dnn : : Backend & v , std : : ostream * os )
{
switch ( v ) {
case DNN_BACKEND_DEFAULT : * os < < " DEFAULT " ; return ;
case DNN_BACKEND_HALIDE : * os < < " HALIDE " ; return ;
2019-12-02 21:18:07 +08:00
case DNN_BACKEND_INFERENCE_ENGINE : * os < < " DLIE* " ; return ;
2019-04-01 23:11:10 +08:00
case DNN_BACKEND_VKCOM : * os < < " VKCOM " ; return ;
2019-03-31 16:51:09 +08:00
case DNN_BACKEND_OPENCV : * os < < " OCV " ; return ;
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
case DNN_BACKEND_CUDA : * os < < " CUDA " ; return ;
2019-12-02 21:18:07 +08:00
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 : * os < < " DLIE " ; return ;
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH : * os < < " NGRAPH " ; return ;
2021-11-24 05:15:31 +08:00
case DNN_BACKEND_WEBNN : * os < < " WEBNN " ; return ;
2019-03-31 16:51:09 +08:00
} // don't use "default:" to emit compiler warnings
* os < < " DNN_BACKEND_UNKNOWN( " < < ( int ) v < < " ) " ;
}
void PrintTo ( const cv : : dnn : : Target & v , std : : ostream * os )
{
switch ( v ) {
case DNN_TARGET_CPU : * os < < " CPU " ; return ;
case DNN_TARGET_OPENCL : * os < < " OCL " ; return ;
case DNN_TARGET_OPENCL_FP16 : * os < < " OCL_FP16 " ; return ;
case DNN_TARGET_MYRIAD : * os < < " MYRIAD " ; return ;
2020-11-18 03:47:24 +08:00
case DNN_TARGET_HDDL : * os < < " HDDL " ; return ;
2019-04-01 23:11:10 +08:00
case DNN_TARGET_VULKAN : * os < < " VULKAN " ; return ;
2019-03-31 16:51:09 +08:00
case DNN_TARGET_FPGA : * os < < " FPGA " ; return ;
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
case DNN_TARGET_CUDA : * os < < " CUDA " ; return ;
case DNN_TARGET_CUDA_FP16 : * os < < " CUDA_FP16 " ; return ;
2019-03-31 16:51:09 +08:00
} // don't use "default:" to emit compiler warnings
* os < < " DNN_TARGET_UNKNOWN( " < < ( int ) v < < " ) " ;
}
void PrintTo ( const tuple < cv : : dnn : : Backend , cv : : dnn : : Target > v , std : : ostream * os )
{
PrintTo ( get < 0 > ( v ) , os ) ;
* os < < " / " ;
PrintTo ( get < 1 > ( v ) , os ) ;
}
2019-04-01 23:11:10 +08:00
CV__DNN_INLINE_NS_END
2019-03-31 16:51:09 +08:00
} } // namespace
namespace opencv_test {
void normAssert (
cv : : InputArray ref , cv : : InputArray test , const char * comment /*= ""*/ ,
double l1 /*= 0.00001*/ , double lInf /*= 0.0001*/ )
{
double normL1 = cvtest : : norm ( ref , test , cv : : NORM_L1 ) / ref . getMat ( ) . total ( ) ;
2020-10-09 19:57:49 +08:00
EXPECT_LE ( normL1 , l1 ) < < comment < < " |ref| = " < < cvtest : : norm ( ref , cv : : NORM_INF ) ;
2019-03-31 16:51:09 +08:00
double normInf = cvtest : : norm ( ref , test , cv : : NORM_INF ) ;
2020-10-09 19:57:49 +08:00
EXPECT_LE ( normInf , lInf ) < < comment < < " |ref| = " < < cvtest : : norm ( ref , cv : : NORM_INF ) ;
2019-03-31 16:51:09 +08:00
}
std : : vector < cv : : Rect2d > matToBoxes ( const cv : : Mat & m )
{
EXPECT_EQ ( m . type ( ) , CV_32FC1 ) ;
EXPECT_EQ ( m . dims , 2 ) ;
EXPECT_EQ ( m . cols , 4 ) ;
std : : vector < cv : : Rect2d > boxes ( m . rows ) ;
for ( int i = 0 ; i < m . rows ; + + i )
{
CV_Assert ( m . row ( i ) . isContinuous ( ) ) ;
const float * data = m . ptr < float > ( i ) ;
double l = data [ 0 ] , t = data [ 1 ] , r = data [ 2 ] , b = data [ 3 ] ;
boxes [ i ] = cv : : Rect2d ( l , t , r - l , b - t ) ;
}
return boxes ;
}
void normAssertDetections (
const std : : vector < int > & refClassIds ,
const std : : vector < float > & refScores ,
const std : : vector < cv : : Rect2d > & refBoxes ,
const std : : vector < int > & testClassIds ,
const std : : vector < float > & testScores ,
const std : : vector < cv : : Rect2d > & testBoxes ,
const char * comment /*= ""*/ , double confThreshold /*= 0.0*/ ,
double scores_diff /*= 1e-5*/ , double boxes_iou_diff /*= 1e-4*/ )
{
2020-07-04 03:14:05 +08:00
ASSERT_FALSE ( testClassIds . empty ( ) ) < < " No detections " ;
2019-03-31 16:51:09 +08:00
std : : vector < bool > matchedRefBoxes ( refBoxes . size ( ) , false ) ;
2020-07-04 03:14:05 +08:00
std : : vector < double > refBoxesIoUDiff ( refBoxes . size ( ) , 1.0 ) ;
2019-03-31 16:51:09 +08:00
for ( int i = 0 ; i < testBoxes . size ( ) ; + + i )
{
2020-07-04 03:14:05 +08:00
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
2019-03-31 16:51:09 +08:00
double testScore = testScores [ i ] ;
if ( testScore < confThreshold )
continue ;
int testClassId = testClassIds [ i ] ;
const cv : : Rect2d & testBox = testBoxes [ i ] ;
bool matched = false ;
2020-05-15 05:53:38 +08:00
double topIoU = 0 ;
2019-03-31 16:51:09 +08:00
for ( int j = 0 ; j < refBoxes . size ( ) & & ! matched ; + + j )
{
if ( ! matchedRefBoxes [ j ] & & testClassId = = refClassIds [ j ] & &
std : : abs ( testScore - refScores [ j ] ) < scores_diff )
{
double interArea = ( testBox & refBoxes [ j ] ) . area ( ) ;
double iou = interArea / ( testBox . area ( ) + refBoxes [ j ] . area ( ) - interArea ) ;
2020-05-15 05:53:38 +08:00
topIoU = std : : max ( topIoU , iou ) ;
2020-07-04 03:14:05 +08:00
refBoxesIoUDiff [ j ] = std : : min ( refBoxesIoUDiff [ j ] , 1.0f - iou ) ;
2020-05-15 05:53:38 +08:00
if ( 1.0 - iou < boxes_iou_diff )
2019-03-31 16:51:09 +08:00
{
matched = true ;
matchedRefBoxes [ j ] = true ;
}
}
}
if ( ! matched )
2020-05-15 05:53:38 +08:00
{
2019-03-31 16:51:09 +08:00
std : : cout < < cv : : format ( " Unmatched prediction: class %d score %f box " ,
testClassId , testScore ) < < testBox < < std : : endl ;
2020-05-15 05:53:38 +08:00
std : : cout < < " Highest IoU: " < < topIoU < < std : : endl ;
}
2019-03-31 16:51:09 +08:00
EXPECT_TRUE ( matched ) < < comment ;
}
// Check unmatched reference detections.
for ( int i = 0 ; i < refBoxes . size ( ) ; + + i )
{
if ( ! matchedRefBoxes [ i ] & & refScores [ i ] > confThreshold )
{
std : : cout < < cv : : format ( " Unmatched reference: class %d score %f box " ,
2020-07-04 03:14:05 +08:00
refClassIds [ i ] , refScores [ i ] ) < < refBoxes [ i ]
< < " IoU diff: " < < refBoxesIoUDiff [ i ]
< < std : : endl ;
2019-03-31 16:51:09 +08:00
EXPECT_LE ( refScores [ i ] , confThreshold ) < < comment ;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections (
cv : : Mat ref , cv : : Mat out , const char * comment /*= ""*/ ,
double confThreshold /*= 0.0*/ , double scores_diff /*= 1e-5*/ ,
double boxes_iou_diff /*= 1e-4*/ )
{
CV_Assert ( ref . total ( ) % 7 = = 0 ) ;
CV_Assert ( out . total ( ) % 7 = = 0 ) ;
ref = ref . reshape ( 1 , ref . total ( ) / 7 ) ;
out = out . reshape ( 1 , out . total ( ) / 7 ) ;
cv : : Mat refClassIds , testClassIds ;
ref . col ( 1 ) . convertTo ( refClassIds , CV_32SC1 ) ;
out . col ( 1 ) . convertTo ( testClassIds , CV_32SC1 ) ;
std : : vector < float > refScores ( ref . col ( 2 ) ) , testScores ( out . col ( 2 ) ) ;
std : : vector < cv : : Rect2d > refBoxes = matToBoxes ( ref . colRange ( 3 , 7 ) ) ;
std : : vector < cv : : Rect2d > testBoxes = matToBoxes ( out . colRange ( 3 , 7 ) ) ;
normAssertDetections ( refClassIds , refScores , refBoxes , testClassIds , testScores ,
testBoxes , comment , confThreshold , scores_diff , boxes_iou_diff ) ;
}
2020-12-04 02:47:40 +08:00
// For text detection networks
// Curved text polygon is not supported in the current version.
// (concave polygon is invalid input to intersectConvexConvex)
void normAssertTextDetections (
const std : : vector < std : : vector < Point > > & gtPolys ,
const std : : vector < std : : vector < Point > > & testPolys ,
const char * comment /*= ""*/ , double boxes_iou_diff /*= 1e-4*/ )
{
std : : vector < bool > matchedRefBoxes ( gtPolys . size ( ) , false ) ;
for ( uint i = 0 ; i < testPolys . size ( ) ; + + i )
{
const std : : vector < Point > & testPoly = testPolys [ i ] ;
bool matched = false ;
double topIoU = 0 ;
for ( uint j = 0 ; j < gtPolys . size ( ) & & ! matched ; + + j )
{
if ( ! matchedRefBoxes [ j ] )
{
std : : vector < Point > intersectionPolygon ;
float intersectArea = intersectConvexConvex ( testPoly , gtPolys [ j ] , intersectionPolygon , true ) ;
double iou = intersectArea / ( contourArea ( testPoly ) + contourArea ( gtPolys [ j ] ) - intersectArea ) ;
topIoU = std : : max ( topIoU , iou ) ;
if ( 1.0 - iou < boxes_iou_diff )
{
matched = true ;
matchedRefBoxes [ j ] = true ;
}
}
}
if ( ! matched ) {
std : : cout < < cv : : format ( " Unmatched-det: " ) < < testPoly < < std : : endl ;
std : : cout < < " Highest IoU: " < < topIoU < < std : : endl ;
}
EXPECT_TRUE ( matched ) < < comment ;
}
// Check unmatched groundtruth.
for ( uint i = 0 ; i < gtPolys . size ( ) ; + + i )
{
if ( ! matchedRefBoxes [ i ] ) {
std : : cout < < cv : : format ( " Unmatched-gt: " ) < < gtPolys [ i ] < < std : : endl ;
}
EXPECT_TRUE ( matchedRefBoxes [ i ] ) ;
}
}
2019-05-29 20:29:31 +08:00
void readFileContent ( const std : : string & filename , CV_OUT std : : vector < char > & content )
2019-03-31 16:51:09 +08:00
{
2019-05-29 20:29:31 +08:00
const std : : ios : : openmode mode = std : : ios : : in | std : : ios : : binary ;
2019-03-31 16:51:09 +08:00
std : : ifstream ifs ( filename . c_str ( ) , mode ) ;
2019-05-29 20:29:31 +08:00
ASSERT_TRUE ( ifs . is_open ( ) ) ;
2019-03-31 16:51:09 +08:00
content . clear ( ) ;
ifs . seekg ( 0 , std : : ios : : end ) ;
2019-05-29 20:29:31 +08:00
const size_t sz = ifs . tellg ( ) ;
content . resize ( sz ) ;
2019-03-31 16:51:09 +08:00
ifs . seekg ( 0 , std : : ios : : beg ) ;
2019-05-29 20:29:31 +08:00
ifs . read ( ( char * ) content . data ( ) , sz ) ;
ASSERT_FALSE ( ifs . fail ( ) ) ;
2019-03-31 16:51:09 +08:00
}
testing : : internal : : ParamGenerator < tuple < Backend , Target > > dnnBackendsAndTargets (
bool withInferenceEngine /*= true*/ ,
bool withHalide /*= false*/ ,
2019-04-01 23:11:10 +08:00
bool withCpuOCV /*= true*/ ,
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
bool withVkCom /*= true*/ ,
2019-12-02 21:18:07 +08:00
bool withCUDA /*= true*/ ,
2021-11-24 05:15:31 +08:00
bool withNgraph /*= true*/ ,
bool withWebnn /*= false*/
2019-03-31 16:51:09 +08:00
)
{
# ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType ( ) ;
# endif
std : : vector < tuple < Backend , Target > > targets ;
std : : vector < Target > available ;
if ( withHalide )
{
available = getAvailableTargets ( DNN_BACKEND_HALIDE ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
targets . push_back ( make_tuple ( DNN_BACKEND_HALIDE , * i ) ) ;
}
# ifdef HAVE_INF_ENGINE
if ( withInferenceEngine )
{
2019-12-02 21:16:06 +08:00
available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ) ;
2019-03-31 16:51:09 +08:00
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
2020-11-18 03:47:24 +08:00
if ( ( * i = = DNN_TARGET_MYRIAD | | * i = = DNN_TARGET_HDDL ) & & ! withVPU )
2019-03-31 16:51:09 +08:00
continue ;
2019-12-02 21:16:06 +08:00
targets . push_back ( make_tuple ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , * i ) ) ;
2019-03-31 16:51:09 +08:00
}
}
2019-12-02 21:16:06 +08:00
if ( withNgraph )
{
available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
2020-11-18 03:47:24 +08:00
if ( ( * i = = DNN_TARGET_MYRIAD | | * i = = DNN_TARGET_HDDL ) & & ! withVPU )
2019-12-02 21:16:06 +08:00
continue ;
targets . push_back ( make_tuple ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , * i ) ) ;
}
}
2019-03-31 16:51:09 +08:00
# else
CV_UNUSED ( withInferenceEngine ) ;
# endif
2019-04-01 23:11:10 +08:00
if ( withVkCom )
{
available = getAvailableTargets ( DNN_BACKEND_VKCOM ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
targets . push_back ( make_tuple ( DNN_BACKEND_VKCOM , * i ) ) ;
}
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
# ifdef HAVE_CUDA
if ( withCUDA )
{
2019-12-20 21:36:32 +08:00
for ( auto target : getAvailableTargets ( DNN_BACKEND_CUDA ) )
targets . push_back ( make_tuple ( DNN_BACKEND_CUDA , target ) ) ;
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
}
# endif
2021-11-24 05:15:31 +08:00
# ifdef HAVE_WEBNN
if ( withWebnn )
{
for ( auto target : getAvailableTargets ( DNN_BACKEND_WEBNN ) ) {
targets . push_back ( make_tuple ( DNN_BACKEND_WEBNN , target ) ) ;
}
}
# else
CV_UNUSED ( withWebnn ) ;
# endif
2019-03-31 16:51:09 +08:00
{
available = getAvailableTargets ( DNN_BACKEND_OPENCV ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
if ( ! withCpuOCV & & * i = = DNN_TARGET_CPU )
continue ;
targets . push_back ( make_tuple ( DNN_BACKEND_OPENCV , * i ) ) ;
}
}
if ( targets . empty ( ) ) // validate at least CPU mode
targets . push_back ( make_tuple ( DNN_BACKEND_OPENCV , DNN_TARGET_CPU ) ) ;
return testing : : ValuesIn ( targets ) ;
}
2019-12-02 21:16:06 +08:00
testing : : internal : : ParamGenerator < tuple < Backend , Target > > dnnBackendsAndTargetsIE ( )
{
# ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType ( ) ;
std : : vector < tuple < Backend , Target > > targets ;
std : : vector < Target > available ;
{
available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
2020-11-18 03:47:24 +08:00
if ( ( * i = = DNN_TARGET_MYRIAD | | * i = = DNN_TARGET_HDDL ) & & ! withVPU )
2019-12-02 21:16:06 +08:00
continue ;
targets . push_back ( make_tuple ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , * i ) ) ;
}
}
return testing : : ValuesIn ( targets ) ;
# else
return testing : : ValuesIn ( std : : vector < tuple < Backend , Target > > ( ) ) ;
# endif
}
2019-03-31 16:51:09 +08:00
# ifdef HAVE_INF_ENGINE
static std : : string getTestInferenceEngineVPUType ( )
{
static std : : string param_vpu_type = utils : : getConfigurationParameterString ( " OPENCV_TEST_DNN_IE_VPU_TYPE " , " " ) ;
return param_vpu_type ;
}
static bool validateVPUType_ ( )
{
std : : string test_vpu_type = getTestInferenceEngineVPUType ( ) ;
if ( test_vpu_type = = " DISABLED " | | test_vpu_type = = " disabled " )
{
return false ;
}
std : : vector < Target > available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE ) ;
bool have_vpu_target = false ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
2020-11-18 03:47:24 +08:00
if ( * i = = DNN_TARGET_MYRIAD | | * i = = DNN_TARGET_HDDL )
2019-03-31 16:51:09 +08:00
{
have_vpu_target = true ;
break ;
}
}
if ( test_vpu_type . empty ( ) )
{
if ( have_vpu_target )
{
CV_LOG_INFO ( NULL , " OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter. " )
}
}
else
{
if ( ! have_vpu_target )
{
CV_LOG_FATAL ( NULL , " OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = ' " < < test_vpu_type < < " ', but VPU is not detected. STOP. " ) ;
exit ( 1 ) ;
}
std : : string dnn_vpu_type = getInferenceEngineVPUType ( ) ;
if ( dnn_vpu_type ! = test_vpu_type )
{
CV_LOG_FATAL ( NULL , " OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: ' " < < test_vpu_type < < " ' vs ' " < < dnn_vpu_type < < " '. STOP. " ) ;
exit ( 1 ) ;
}
}
2019-06-15 20:17:25 +08:00
if ( have_vpu_target )
{
std : : string dnn_vpu_type = getInferenceEngineVPUType ( ) ;
if ( dnn_vpu_type = = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 )
registerGlobalSkipTag ( CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 ) ;
if ( dnn_vpu_type = = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X )
registerGlobalSkipTag ( CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X ) ;
}
2019-03-31 16:51:09 +08:00
return true ;
}
bool validateVPUType ( )
{
static bool result = validateVPUType_ ( ) ;
return result ;
}
# endif // HAVE_INF_ENGINE
2019-06-15 20:17:25 +08:00
void initDNNTests ( )
{
const char * extraTestDataPath =
# ifdef WINRT
NULL ;
# else
getenv ( " OPENCV_DNN_TEST_DATA_PATH " ) ;
# endif
if ( extraTestDataPath )
cvtest : : addDataSearchPath ( extraTestDataPath ) ;
registerGlobalSkipTag (
2021-12-15 00:58:06 +08:00
CV_TEST_TAG_DNN_SKIP_OPENCV_BACKEND ,
CV_TEST_TAG_DNN_SKIP_CPU ,
2019-06-15 20:17:25 +08:00
CV_TEST_TAG_DNN_SKIP_OPENCL , CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
) ;
2021-12-15 00:58:06 +08:00
# if defined(HAVE_HALIDE)
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_HALIDE
2021-12-15 16:57:50 +08:00
) ;
2021-12-15 00:58:06 +08:00
# endif
2019-06-15 20:17:25 +08:00
# if defined(INF_ENGINE_RELEASE)
registerGlobalSkipTag (
2019-12-02 21:16:06 +08:00
CV_TEST_TAG_DNN_SKIP_IE ,
2019-06-15 20:17:25 +08:00
# if INF_ENGINE_VER_MAJOR_EQ(2018050000)
CV_TEST_TAG_DNN_SKIP_IE_2018R5 ,
# elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
CV_TEST_TAG_DNN_SKIP_IE_2019R1 ,
2019-07-25 14:57:49 +08:00
# if INF_ENGINE_RELEASE == 2019010100
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 ,
# endif
# elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
CV_TEST_TAG_DNN_SKIP_IE_2019R2 ,
2019-10-04 15:29:27 +08:00
# elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
CV_TEST_TAG_DNN_SKIP_IE_2019R3 ,
2019-06-15 20:17:25 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH ,
# endif
2020-02-27 21:02:32 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER ,
# endif
2021-03-24 17:28:05 +08:00
CV_TEST_TAG_DNN_SKIP_IE_CPU
2019-06-15 20:17:25 +08:00
) ;
registerGlobalSkipTag (
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
CV_TEST_TAG_DNN_SKIP_IE_OPENCL , CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
) ;
2021-03-24 17:28:05 +08:00
# endif
2019-06-27 04:17:19 +08:00
# ifdef HAVE_VULKAN
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_VULKAN
) ;
# endif
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 19:28:00 +08:00
# ifdef HAVE_CUDA
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_CUDA , CV_TEST_TAG_DNN_SKIP_CUDA_FP32 , CV_TEST_TAG_DNN_SKIP_CUDA_FP16
) ;
# endif
2021-12-15 00:58:06 +08:00
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_ONNX_CONFORMANCE ,
CV_TEST_TAG_DNN_SKIP_PARSER
) ;
2019-06-15 20:17:25 +08:00
}
2019-03-31 16:51:09 +08:00
} // namespace