opencv/3rdparty/clapack/src/dormqr.c

685 lines
18 KiB
C
Raw Normal View History

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b DORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm).
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DORM2R + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorm2r.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorm2r.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorm2r.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
// WORK, INFO )
//
// .. Scalar Arguments ..
// CHARACTER SIDE, TRANS
// INTEGER INFO, K, LDA, LDC, M, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DORM2R overwrites the general real m by n matrix C with
//>
//> Q * C if SIDE = 'L' and TRANS = 'N', or
//>
//> Q**T* C if SIDE = 'L' and TRANS = 'T', or
//>
//> C * Q if SIDE = 'R' and TRANS = 'N', or
//>
//> C * Q**T if SIDE = 'R' and TRANS = 'T',
//>
//> where Q is a real orthogonal matrix defined as the product of k
//> elementary reflectors
//>
//> Q = H(1) H(2) . . . H(k)
//>
//> as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
//> if SIDE = 'R'.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] SIDE
//> \verbatim
//> SIDE is CHARACTER*1
//> = 'L': apply Q or Q**T from the Left
//> = 'R': apply Q or Q**T from the Right
//> \endverbatim
//>
//> \param[in] TRANS
//> \verbatim
//> TRANS is CHARACTER*1
//> = 'N': apply Q (No transpose)
//> = 'T': apply Q**T (Transpose)
//> \endverbatim
//>
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix C. M >= 0.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix C. N >= 0.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The number of elementary reflectors whose product defines
//> the matrix Q.
//> If SIDE = 'L', M >= K >= 0;
//> if SIDE = 'R', N >= K >= 0.
//> \endverbatim
//>
//> \param[in] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,K)
//> The i-th column must contain the vector which defines the
//> elementary reflector H(i), for i = 1,2,...,k, as returned by
//> DGEQRF in the first k columns of its array argument A.
//> A is modified by the routine but restored on exit.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The leading dimension of the array A.
//> If SIDE = 'L', LDA >= max(1,M);
//> if SIDE = 'R', LDA >= max(1,N).
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION array, dimension (K)
//> TAU(i) must contain the scalar factor of the elementary
//> reflector H(i), as returned by DGEQRF.
//> \endverbatim
//>
//> \param[in,out] C
//> \verbatim
//> C is DOUBLE PRECISION array, dimension (LDC,N)
//> On entry, the m by n matrix C.
//> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
//> \endverbatim
//>
//> \param[in] LDC
//> \verbatim
//> LDC is INTEGER
//> The leading dimension of the array C. LDC >= max(1,M).
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension
//> (N) if SIDE = 'L',
//> (M) if SIDE = 'R'
//> \endverbatim
//>
//> \param[out] INFO
//> \verbatim
//> INFO is INTEGER
//> = 0: successful exit
//> < 0: if INFO = -i, the i-th argument had an illegal value
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERcomputational
//
// =====================================================================
/* Subroutine */ int dorm2r_(char *side, char *trans, int *m, int *n, int *k,
double *a, int *lda, double *tau, double *c__, int *ldc, double *work,
int *info)
{
// Table of constant values
int c__1 = 1;
// System generated locals
int a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
// Local variables
int i__, i1, i2, i3, ic, jc, mi, ni, nq;
double aii;
int left;
extern /* Subroutine */ int dlarf_(char *, int *, int *, double *, int *,
double *, double *, int *, double *);
extern int lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, int *);
int notran;
//
// -- LAPACK computational routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Functions ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
// .. Executable Statements ..
//
// Test the input arguments
//
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
// Function Body
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
//
// NQ is the order of Q
//
if (left) {
nq = *m;
} else {
nq = *n;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORM2R", &i__1);
return 0;
}
//
// Quick return if possible
//
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = 1;
} else {
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
if (left) {
//
// H(i) is applied to C(i:m,1:n)
//
mi = *m - i__ + 1;
ic = i__;
} else {
//
// H(i) is applied to C(1:m,i:n)
//
ni = *n - i__ + 1;
jc = i__;
}
//
// Apply H(i)
//
aii = a[i__ + i__ * a_dim1];
a[i__ + i__ * a_dim1] = 1.;
dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
ic + jc * c_dim1], ldc, &work[1]);
a[i__ + i__ * a_dim1] = aii;
// L10:
}
return 0;
//
// End of DORM2R
//
} // dorm2r_
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
//> \brief \b DORMQR
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DORMQR + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormqr.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormqr.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormqr.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
// WORK, LWORK, INFO )
//
// .. Scalar Arguments ..
// CHARACTER SIDE, TRANS
// INTEGER INFO, K, LDA, LDC, LWORK, M, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DORMQR overwrites the general real M-by-N matrix C with
//>
//> SIDE = 'L' SIDE = 'R'
//> TRANS = 'N': Q * C C * Q
//> TRANS = 'T': Q**T * C C * Q**T
//>
//> where Q is a real orthogonal matrix defined as the product of k
//> elementary reflectors
//>
//> Q = H(1) H(2) . . . H(k)
//>
//> as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
//> if SIDE = 'R'.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] SIDE
//> \verbatim
//> SIDE is CHARACTER*1
//> = 'L': apply Q or Q**T from the Left;
//> = 'R': apply Q or Q**T from the Right.
//> \endverbatim
//>
//> \param[in] TRANS
//> \verbatim
//> TRANS is CHARACTER*1
//> = 'N': No transpose, apply Q;
//> = 'T': Transpose, apply Q**T.
//> \endverbatim
//>
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix C. M >= 0.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix C. N >= 0.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The number of elementary reflectors whose product defines
//> the matrix Q.
//> If SIDE = 'L', M >= K >= 0;
//> if SIDE = 'R', N >= K >= 0.
//> \endverbatim
//>
//> \param[in] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,K)
//> The i-th column must contain the vector which defines the
//> elementary reflector H(i), for i = 1,2,...,k, as returned by
//> DGEQRF in the first k columns of its array argument A.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The leading dimension of the array A.
//> If SIDE = 'L', LDA >= max(1,M);
//> if SIDE = 'R', LDA >= max(1,N).
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION array, dimension (K)
//> TAU(i) must contain the scalar factor of the elementary
//> reflector H(i), as returned by DGEQRF.
//> \endverbatim
//>
//> \param[in,out] C
//> \verbatim
//> C is DOUBLE PRECISION array, dimension (LDC,N)
//> On entry, the M-by-N matrix C.
//> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
//> \endverbatim
//>
//> \param[in] LDC
//> \verbatim
//> LDC is INTEGER
//> The leading dimension of the array C. LDC >= max(1,M).
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
//> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
//> \endverbatim
//>
//> \param[in] LWORK
//> \verbatim
//> LWORK is INTEGER
//> The dimension of the array WORK.
//> If SIDE = 'L', LWORK >= max(1,N);
//> if SIDE = 'R', LWORK >= max(1,M).
//> For good performance, LWORK should generally be larger.
//>
//> If LWORK = -1, then a workspace query is assumed; the routine
//> only calculates the optimal size of the WORK array, returns
//> this value as the first entry of the WORK array, and no error
//> message related to LWORK is issued by XERBLA.
//> \endverbatim
//>
//> \param[out] INFO
//> \verbatim
//> INFO is INTEGER
//> = 0: successful exit
//> < 0: if INFO = -i, the i-th argument had an illegal value
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERcomputational
//
// =====================================================================
/* Subroutine */ int dormqr_(char *side, char *trans, int *m, int *n, int *k,
double *a, int *lda, double *tau, double *c__, int *ldc, double *work,
int *lwork, int *info)
{
// Table of constant values
int c__1 = 1;
int c_n1 = -1;
int c__2 = 2;
int c__65 = 65;
// System generated locals
address a__1[2];
int a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, i__5;
char ch__1[2+1]={'\0'};
// Local variables
int i__, i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iwt;
int left;
extern int lsame_(char *, char *);
int nbmin, iinfo;
extern /* Subroutine */ int dorm2r_(char *, char *, int *, int *, int *,
double *, int *, double *, double *, int *, double *, int *),
dlarfb_(char *, char *, char *, char *, int *, int *, int *,
double *, int *, double *, int *, double *, int *, double *, int *
), dlarft_(char *, char *, int *, int *, double *, int *, double *
, double *, int *), xerbla_(char *, int *);
extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *);
int notran;
int ldwork, lwkopt;
int lquery;
//
// -- LAPACK computational routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Functions ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
// .. Executable Statements ..
//
// Test the input arguments
//
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
// Function Body
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
lquery = *lwork == -1;
//
// NQ is the order of Q and NW is the minimum dimension of WORK
//
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -12;
}
if (*info == 0) {
//
// Compute the workspace requirements
//
// Computing MIN
// Writing concatenation
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2);
i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1);
nb = min(i__1,i__2);
lwkopt = max(1,nw) * nb + 4160;
work[1] = (double) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORMQR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
//
// Quick return if possible
//
if (*m == 0 || *n == 0 || *k == 0) {
work[1] = 1.;
return 0;
}
nbmin = 2;
ldwork = nw;
if (nb > 1 && nb < *k) {
if (*lwork < nw * nb + 4160) {
nb = (*lwork - 4160) / ldwork;
// Computing MAX
// Writing concatenation
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2);
i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1);
nbmin = max(i__1,i__2);
}
}
if (nb < nbmin || nb >= *k) {
//
// Use unblocked code
//
dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo);
} else {
//
// Use blocked code
//
iwt = nw * nb + 1;
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = nb;
} else {
i1 = (*k - 1) / nb * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
// Computing MIN
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
//
// Form the triangular factor of the block reflector
// H = H(i) H(i+1) . . . H(i+ib-1)
//
i__4 = nq - i__ + 1;
dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], &work[iwt], &c__65);
if (left) {
//
// H or H**T is applied to C(i:m,1:n)
//
mi = *m - i__ + 1;
ic = i__;
} else {
//
// H or H**T is applied to C(1:m,i:n)
//
ni = *n - i__ + 1;
jc = i__;
}
//
// Apply H or H**T
//
dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
i__ + i__ * a_dim1], lda, &work[iwt], &c__65, &c__[ic +
jc * c_dim1], ldc, &work[1], &ldwork);
// L10:
}
}
work[1] = (double) lwkopt;
return 0;
//
// End of DORMQR
//
} // dormqr_