opencv/modules/core/src/cuda_stream.cpp

870 lines
19 KiB
C++
Raw Normal View History

2012-10-17 07:18:30 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <cstdint>
2012-10-17 07:18:30 +08:00
using namespace cv;
2013-08-28 19:45:13 +08:00
using namespace cv::cuda;
2012-10-17 07:18:30 +08:00
#if defined(_MSC_VER)
#pragma warning(disable : 4702) // unreachable code
#endif
/////////////////////////////////////////////////////////////
/// MemoryStack
#ifdef HAVE_CUDA
namespace
{
class MemoryPool;
class MemoryStack
{
public:
uchar* requestMemory(size_t size);
void returnMemory(uchar* ptr);
uchar* datastart;
uchar* dataend;
uchar* tip;
bool isFree;
MemoryPool* pool;
#if !defined(NDEBUG)
std::vector<size_t> allocations;
#endif
};
uchar* MemoryStack::requestMemory(size_t size)
{
const size_t freeMem = dataend - tip;
if (size > freeMem)
return 0;
uchar* ptr = tip;
tip += size;
#if !defined(NDEBUG)
allocations.push_back(size);
#endif
return ptr;
}
void MemoryStack::returnMemory(uchar* ptr)
{
CV_DbgAssert( ptr >= datastart && ptr < dataend );
#if !defined(NDEBUG)
const size_t allocSize = tip - ptr;
CV_Assert( allocSize == allocations.back() );
allocations.pop_back();
#endif
tip = ptr;
}
}
#endif
/////////////////////////////////////////////////////////////
/// MemoryPool
#ifdef HAVE_CUDA
namespace
{
class MemoryPool
{
public:
MemoryPool();
~MemoryPool() { release(); }
void initialize(size_t stackSize, int stackCount);
void release();
MemoryStack* getFreeMemStack();
void returnMemStack(MemoryStack* memStack);
private:
void initilizeImpl();
Mutex mtx_;
bool initialized_;
size_t stackSize_;
int stackCount_;
uchar* mem_;
std::vector<MemoryStack> stacks_;
MemoryPool(const MemoryPool&); //= delete;
};
MemoryPool::MemoryPool() : initialized_(false), mem_(0)
{
// default : 10 Mb, 5 stacks
stackSize_ = 10 * 1024 * 1024;
stackCount_ = 5;
}
void MemoryPool::initialize(size_t stackSize, int stackCount)
{
AutoLock lock(mtx_);
release();
stackSize_ = stackSize;
stackCount_ = stackCount;
initilizeImpl();
}
void MemoryPool::initilizeImpl()
{
const size_t totalSize = stackSize_ * stackCount_;
if (totalSize > 0)
{
cudaError_t err = cudaMalloc(&mem_, totalSize);
if (err != cudaSuccess)
return;
stacks_.resize(stackCount_);
uchar* ptr = mem_;
for (int i = 0; i < stackCount_; ++i)
{
stacks_[i].datastart = ptr;
stacks_[i].dataend = ptr + stackSize_;
stacks_[i].tip = ptr;
stacks_[i].isFree = true;
stacks_[i].pool = this;
ptr += stackSize_;
}
initialized_ = true;
}
}
void MemoryPool::release()
{
if (mem_)
{
#if !defined(NDEBUG)
for (int i = 0; i < stackCount_; ++i)
{
CV_DbgAssert( stacks_[i].isFree );
CV_DbgAssert( stacks_[i].tip == stacks_[i].datastart );
}
#endif
cudaFree(mem_);
mem_ = 0;
initialized_ = false;
}
}
MemoryStack* MemoryPool::getFreeMemStack()
{
AutoLock lock(mtx_);
if (!initialized_)
initilizeImpl();
if (!mem_)
return 0;
for (int i = 0; i < stackCount_; ++i)
{
if (stacks_[i].isFree)
{
stacks_[i].isFree = false;
return &stacks_[i];
}
}
return 0;
}
void MemoryPool::returnMemStack(MemoryStack* memStack)
{
AutoLock lock(mtx_);
CV_DbgAssert( !memStack->isFree );
#if !defined(NDEBUG)
bool found = false;
for (int i = 0; i < stackCount_; ++i)
{
if (memStack == &stacks_[i])
{
found = true;
break;
}
}
CV_DbgAssert( found );
#endif
CV_DbgAssert( memStack->tip == memStack->datastart );
memStack->isFree = true;
}
}
#endif
////////////////////////////////////////////////////////////////
/// Stream::Impl
2013-04-16 21:43:49 +08:00
#ifndef HAVE_CUDA
2012-10-17 07:18:30 +08:00
2013-08-28 19:45:13 +08:00
class cv::cuda::Stream::Impl
2012-10-17 07:18:30 +08:00
{
2013-04-16 21:43:49 +08:00
public:
Impl(void* ptr = 0)
2012-10-17 07:18:30 +08:00
{
2018-09-07 19:33:52 +08:00
CV_UNUSED(ptr);
2013-04-16 21:43:49 +08:00
throw_no_cuda();
}
2013-04-16 21:43:49 +08:00
};
#else
2012-10-17 07:18:30 +08:00
namespace
{
class StackAllocator;
}
2013-08-28 19:45:13 +08:00
class cv::cuda::Stream::Impl
2013-04-16 21:43:49 +08:00
{
public:
2012-10-17 07:18:30 +08:00
cudaStream_t stream;
bool ownStream;
Ptr<GpuMat::Allocator> allocator;
2013-04-16 21:43:49 +08:00
Impl();
Impl(const Ptr<GpuMat::Allocator>& allocator);
Impl(const unsigned int cudaFlags);
explicit Impl(cudaStream_t stream);
2013-04-16 21:43:49 +08:00
~Impl();
};
2012-10-17 07:18:30 +08:00
cv::cuda::Stream::Impl::Impl() : stream(0), ownStream(false)
{
2013-04-16 21:43:49 +08:00
cudaSafeCall( cudaStreamCreate(&stream) );
ownStream = true;
2013-10-07 22:25:55 +08:00
allocator = makePtr<StackAllocator>(stream);
}
cv::cuda::Stream::Impl::Impl(const Ptr<GpuMat::Allocator>& allocator) : stream(0), ownStream(false), allocator(allocator)
{
cudaSafeCall( cudaStreamCreate(&stream) );
ownStream = true;
2012-10-17 07:18:30 +08:00
}
cv::cuda::Stream::Impl::Impl(const unsigned int cudaFlags) : stream(0), ownStream(false)
{
cudaSafeCall(cudaStreamCreateWithFlags(&stream, cudaFlags));
ownStream = true;
allocator = makePtr<StackAllocator>(stream);
}
cv::cuda::Stream::Impl::Impl(cudaStream_t stream_) : stream(stream_), ownStream(false)
2012-10-17 07:18:30 +08:00
{
allocator = makePtr<StackAllocator>(stream);
2012-10-17 07:18:30 +08:00
}
2013-08-28 19:45:13 +08:00
cv::cuda::Stream::Impl::~Impl()
{
allocator.release();
2013-10-07 22:25:55 +08:00
if (stream && ownStream)
{
2013-04-16 21:43:49 +08:00
cudaStreamDestroy(stream);
}
}
2012-10-17 07:18:30 +08:00
#endif
/////////////////////////////////////////////////////////////
/// DefaultDeviceInitializer
#ifdef HAVE_CUDA
namespace cv { namespace cuda
2012-10-17 07:18:30 +08:00
{
class DefaultDeviceInitializer
{
public:
DefaultDeviceInitializer();
~DefaultDeviceInitializer();
Stream& getNullStream(int deviceId);
MemoryPool& getMemoryPool(int deviceId);
private:
void initStreams();
void initPools();
std::vector<Ptr<Stream> > streams_;
Mutex streams_mtx_;
std::vector<Ptr<MemoryPool> > pools_;
Mutex pools_mtx_;
};
DefaultDeviceInitializer::DefaultDeviceInitializer()
{
}
DefaultDeviceInitializer::~DefaultDeviceInitializer()
{
streams_.clear();
for (size_t i = 0; i < pools_.size(); ++i)
{
cudaSetDevice(static_cast<int>(i));
pools_[i]->release();
}
pools_.clear();
}
Stream& DefaultDeviceInitializer::getNullStream(int deviceId)
{
AutoLock lock(streams_mtx_);
if (streams_.empty())
{
int deviceCount = getCudaEnabledDeviceCount();
if (deviceCount > 0)
streams_.resize(deviceCount);
}
CV_DbgAssert( deviceId >= 0 && deviceId < static_cast<int>(streams_.size()) );
if (streams_[deviceId].empty())
{
cudaStream_t stream = NULL;
Ptr<Stream::Impl> impl = makePtr<Stream::Impl>(stream);
streams_[deviceId] = Ptr<Stream>(new Stream(impl));
}
return *streams_[deviceId];
}
MemoryPool& DefaultDeviceInitializer::getMemoryPool(int deviceId)
{
AutoLock lock(pools_mtx_);
if (pools_.empty())
{
int deviceCount = getCudaEnabledDeviceCount();
if (deviceCount > 0)
{
pools_.resize(deviceCount);
for (size_t i = 0; i < pools_.size(); ++i)
{
cudaSetDevice(static_cast<int>(i));
pools_[i] = makePtr<MemoryPool>();
}
}
}
CV_DbgAssert( deviceId >= 0 && deviceId < static_cast<int>(pools_.size()) );
MemoryPool* p = pools_[deviceId];
CV_Assert(p);
return *p;
}
DefaultDeviceInitializer initializer;
}}
2013-04-16 21:43:49 +08:00
#endif
/////////////////////////////////////////////////////////////
/// Stream
2013-08-28 19:45:13 +08:00
cv::cuda::Stream::Stream()
2013-04-16 21:43:49 +08:00
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
impl_ = makePtr<Impl>();
2013-04-16 21:43:49 +08:00
#endif
2012-10-17 07:18:30 +08:00
}
cv::cuda::Stream::Stream(const Ptr<GpuMat::Allocator>& allocator)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(allocator);
throw_no_cuda();
#else
impl_ = makePtr<Impl>(allocator);
#endif
}
cv::cuda::Stream::Stream(const size_t cudaFlags)
{
#ifndef HAVE_CUDA
CV_UNUSED(cudaFlags);
throw_no_cuda();
#else
impl_ = makePtr<Impl>(cudaFlags & UINT_MAX);
#endif
}
2013-08-28 19:45:13 +08:00
bool cv::cuda::Stream::queryIfComplete() const
2012-10-17 07:18:30 +08:00
{
2013-04-16 21:43:49 +08:00
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaError_t err = cudaStreamQuery(impl_->stream);
2012-10-17 07:18:30 +08:00
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
2013-04-08 16:37:36 +08:00
cudaSafeCall(err);
2012-10-17 07:18:30 +08:00
return false;
2013-04-16 21:43:49 +08:00
#endif
2012-10-17 07:18:30 +08:00
}
2013-08-28 19:45:13 +08:00
void cv::cuda::Stream::waitForCompletion()
{
2013-04-16 21:43:49 +08:00
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaSafeCall( cudaStreamSynchronize(impl_->stream) );
#endif
2012-10-17 07:18:30 +08:00
}
2013-08-28 19:45:13 +08:00
void cv::cuda::Stream::waitEvent(const Event& event)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(event);
throw_no_cuda();
#else
cudaSafeCall( cudaStreamWaitEvent(impl_->stream, EventAccessor::getEvent(event), 0) );
#endif
}
2013-04-16 21:43:49 +08:00
#if defined(HAVE_CUDA) && (CUDART_VERSION >= 5000)
namespace
2012-10-17 07:18:30 +08:00
{
struct CallbackData
{
2013-04-16 21:43:49 +08:00
Stream::StreamCallback callback;
void* userData;
2013-04-16 21:43:49 +08:00
CallbackData(Stream::StreamCallback callback_, void* userData_) : callback(callback_), userData(userData_) {}
};
void CUDART_CB cudaStreamCallback(cudaStream_t, cudaError_t status, void* userData)
{
CallbackData* data = reinterpret_cast<CallbackData*>(userData);
2013-04-16 21:43:49 +08:00
data->callback(static_cast<int>(status), data->userData);
delete data;
}
2012-10-17 07:18:30 +08:00
}
#endif
2013-08-28 19:45:13 +08:00
void cv::cuda::Stream::enqueueHostCallback(StreamCallback callback, void* userData)
{
2013-04-16 21:43:49 +08:00
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(callback);
CV_UNUSED(userData);
2013-04-16 21:43:49 +08:00
throw_no_cuda();
#else
#if CUDART_VERSION < 5000
2018-09-07 19:33:52 +08:00
CV_UNUSED(callback);
CV_UNUSED(userData);
CV_Error(cv::Error::StsNotImplemented, "This function requires CUDA >= 5.0");
2013-04-16 21:43:49 +08:00
#else
CallbackData* data = new CallbackData(callback, userData);
cudaSafeCall( cudaStreamAddCallback(impl_->stream, cudaStreamCallback, data, 0) );
#endif
#endif
}
2012-10-17 07:18:30 +08:00
2013-08-28 19:45:13 +08:00
Stream& cv::cuda::Stream::Null()
2012-10-17 07:18:30 +08:00
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
const int deviceId = getDevice();
return initializer.getNullStream(deviceId);
#endif
2012-10-17 07:18:30 +08:00
}
void* cv::cuda::Stream::cudaPtr() const
{
#ifndef HAVE_CUDA
return nullptr;
#else
return impl_->stream;
#endif
}
2013-08-28 19:45:13 +08:00
cv::cuda::Stream::operator bool_type() const
{
2013-04-16 21:43:49 +08:00
#ifndef HAVE_CUDA
return 0;
#else
return (impl_->stream != 0) ? &Stream::this_type_does_not_support_comparisons : 0;
#endif
}
#ifdef HAVE_CUDA
cudaStream_t cv::cuda::StreamAccessor::getStream(const Stream& stream)
{
return stream.impl_->stream;
}
Stream cv::cuda::StreamAccessor::wrapStream(cudaStream_t stream)
{
return Stream(makePtr<Stream::Impl>(stream));
}
#endif
/////////////////////////////////////////////////////////////
/// StackAllocator
#ifdef HAVE_CUDA
namespace
{
bool enableMemoryPool = false;
class StackAllocator : public GpuMat::Allocator
{
public:
explicit StackAllocator(cudaStream_t stream);
~StackAllocator();
2018-04-05 18:44:44 +08:00
bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) CV_OVERRIDE;
void free(GpuMat* mat) CV_OVERRIDE;
private:
StackAllocator(const StackAllocator&);
StackAllocator& operator =(const StackAllocator&);
cudaStream_t stream_;
MemoryStack* memStack_;
size_t alignment_;
};
StackAllocator::StackAllocator(cudaStream_t stream) : stream_(stream), memStack_(0)
{
if (enableMemoryPool)
{
const int deviceId = getDevice();
memStack_ = initializer.getMemoryPool(deviceId).getFreeMemStack();
DeviceInfo devInfo(deviceId);
alignment_ = devInfo.textureAlignment();
}
}
StackAllocator::~StackAllocator()
{
if (memStack_ != 0)
{
cudaStreamSynchronize(stream_);
memStack_->pool->returnMemStack(memStack_);
}
}
size_t alignUp(size_t what, size_t alignment)
{
size_t alignMask = alignment-1;
size_t inverseAlignMask = ~alignMask;
size_t res = (what + alignMask) & inverseAlignMask;
return res;
}
bool StackAllocator::allocate(GpuMat* mat, int rows, int cols, size_t elemSize)
{
if (memStack_ == 0)
return false;
size_t pitch, memSize;
if (rows > 1 && cols > 1)
{
pitch = alignUp(cols * elemSize, alignment_);
memSize = pitch * rows;
}
else
{
// Single row or single column must be continuous
pitch = elemSize * cols;
memSize = alignUp(elemSize * cols * rows, 64);
}
uchar* ptr = memStack_->requestMemory(memSize);
if (ptr == 0)
return false;
mat->data = ptr;
mat->step = pitch;
mat->refcount = (int*) fastMalloc(sizeof(int));
return true;
}
void StackAllocator::free(GpuMat* mat)
{
if (memStack_ == 0)
return;
memStack_->returnMemory(mat->datastart);
fastFree(mat->refcount);
}
}
#endif
/////////////////////////////////////////////////////////////
/// BufferPool
void cv::cuda::setBufferPoolUsage(bool on)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(on);
throw_no_cuda();
#else
enableMemoryPool = on;
#endif
}
void cv::cuda::setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(deviceId);
CV_UNUSED(stackSize);
CV_UNUSED(stackCount);
throw_no_cuda();
#else
const int currentDevice = getDevice();
if (deviceId >= 0)
{
setDevice(deviceId);
initializer.getMemoryPool(deviceId).initialize(stackSize, stackCount);
}
else
{
const int deviceCount = getCudaEnabledDeviceCount();
for (deviceId = 0; deviceId < deviceCount; ++deviceId)
{
setDevice(deviceId);
initializer.getMemoryPool(deviceId).initialize(stackSize, stackCount);
}
}
setDevice(currentDevice);
#endif
}
#ifndef HAVE_CUDA
cv::cuda::BufferPool::BufferPool(Stream& stream)
{
2018-09-07 19:33:52 +08:00
CV_UNUSED(stream);
throw_no_cuda();
}
#else
cv::cuda::BufferPool::BufferPool(Stream& stream) : allocator_(stream.impl_->allocator)
{
}
#endif
GpuMat cv::cuda::BufferPool::getBuffer(int rows, int cols, int type)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(rows);
CV_UNUSED(cols);
CV_UNUSED(type);
throw_no_cuda();
#else
GpuMat buf(allocator_);
buf.create(rows, cols, type);
return buf;
#endif
}
////////////////////////////////////////////////////////////////
2013-10-03 21:22:18 +08:00
// Event
#ifndef HAVE_CUDA
2013-08-28 19:45:13 +08:00
class cv::cuda::Event::Impl
{
public:
Impl(unsigned int)
{
throw_no_cuda();
}
};
#else
2013-08-28 19:45:13 +08:00
class cv::cuda::Event::Impl
{
public:
cudaEvent_t event;
bool ownEvent;
explicit Impl(unsigned int flags);
explicit Impl(cudaEvent_t event);
~Impl();
};
cv::cuda::Event::Impl::Impl(unsigned int flags) : event(0), ownEvent(false)
{
cudaSafeCall( cudaEventCreateWithFlags(&event, flags) );
ownEvent = true;
}
cv::cuda::Event::Impl::Impl(cudaEvent_t e) : event(e), ownEvent(false)
{
}
2013-08-28 19:45:13 +08:00
cv::cuda::Event::Impl::~Impl()
{
if (event && ownEvent)
{
cudaEventDestroy(event);
}
}
2013-08-28 19:45:13 +08:00
cudaEvent_t cv::cuda::EventAccessor::getEvent(const Event& event)
{
return event.impl_->event;
}
Event cv::cuda::EventAccessor::wrapEvent(cudaEvent_t event)
{
return Event(makePtr<Event::Impl>(event));
}
#endif
cv::cuda::Event::Event(const Event::CreateFlags flags)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(flags);
throw_no_cuda();
#else
impl_ = makePtr<Impl>(flags);
#endif
}
2013-08-28 19:45:13 +08:00
void cv::cuda::Event::record(Stream& stream)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(stream);
throw_no_cuda();
#else
cudaSafeCall( cudaEventRecord(impl_->event, StreamAccessor::getStream(stream)) );
#endif
}
2013-08-28 19:45:13 +08:00
bool cv::cuda::Event::queryIfComplete() const
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaError_t err = cudaEventQuery(impl_->event);
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
cudaSafeCall(err);
return false;
#endif
}
2013-08-28 19:45:13 +08:00
void cv::cuda::Event::waitForCompletion()
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaSafeCall( cudaEventSynchronize(impl_->event) );
#endif
}
2013-08-28 19:45:13 +08:00
float cv::cuda::Event::elapsedTime(const Event& start, const Event& end)
{
#ifndef HAVE_CUDA
2018-09-07 19:33:52 +08:00
CV_UNUSED(start);
CV_UNUSED(end);
throw_no_cuda();
#else
float ms;
cudaSafeCall( cudaEventElapsedTime(&ms, start.impl_->event, end.impl_->event) );
return ms;
#endif
}