opencv/modules/gpu/src/imgproc.cpp

1640 lines
64 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA)
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); }
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_nogpu(); }
2011-08-01 21:15:37 +08:00
void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::calcHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
2011-08-02 16:33:27 +08:00
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool, Stream&) { throw_nogpu(); }
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool, Stream&) { throw_nogpu(); }
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int, Stream&) { throw_nogpu(); }
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_nogpu(); }
2011-08-08 16:53:55 +08:00
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU
namespace cv { namespace gpu { namespace device
2011-08-31 19:42:54 +08:00
{
namespace imgproc
{
void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
}}}
2011-08-31 19:42:54 +08:00
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream)
2010-11-08 17:55:10 +08:00
{
using namespace ::cv::gpu::device::imgproc;
if( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dst.create( src.size(), CV_8UC4 );
2010-11-08 17:55:10 +08:00
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
2010-11-08 17:55:10 +08:00
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
2010-11-08 17:55:10 +08:00
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
2010-11-08 17:55:10 +08:00
eps = (float)std::max(criteria.epsilon, 0.0);
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
2010-10-11 22:25:30 +08:00
// meanShiftProc_GPU
namespace cv { namespace gpu { namespace device
2011-08-31 19:42:54 +08:00
{
namespace imgproc
{
void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
}}}
2011-08-31 19:42:54 +08:00
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream)
2010-11-08 17:55:10 +08:00
{
using namespace ::cv::gpu::device::imgproc;
2010-10-11 22:25:30 +08:00
if( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dstr.create( src.size(), CV_8UC4 );
dstsp.create( src.size(), CV_16SC2 );
2010-11-08 17:55:10 +08:00
2010-10-11 22:25:30 +08:00
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
2010-11-08 17:55:10 +08:00
2010-10-11 22:25:30 +08:00
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
2010-11-08 17:55:10 +08:00
2010-10-11 22:25:30 +08:00
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
2010-11-08 17:55:10 +08:00
eps = (float)std::max(criteria.epsilon, 0.0);
2010-10-11 22:25:30 +08:00
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
2010-10-11 22:25:30 +08:00
}
////////////////////////////////////////////////////////////////////////
// drawColorDisp
namespace cv { namespace gpu { namespace device
2011-08-31 19:42:54 +08:00
{
namespace imgproc
{
void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
void drawColorDisp_gpu(const PtrStepSz<short>& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
}
}}}
2011-08-31 19:42:54 +08:00
namespace
{
template <typename T>
void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream)
2010-11-08 17:55:10 +08:00
{
using namespace ::cv::gpu::device::imgproc;
dst.create(src.size(), CV_8UC4);
drawColorDisp_gpu((PtrStepSz<T>)src, dst, ndisp, stream);
}
typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream);
const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0};
}
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream)
{
CV_Assert(src.type() == CV_8U || src.type() == CV_16S);
2010-11-08 17:55:10 +08:00
drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D
namespace cv { namespace gpu { namespace device
2011-08-31 19:42:54 +08:00
{
namespace imgproc
{
template <typename T, typename D>
void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
}
}}}
2011-08-31 19:42:54 +08:00
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream)
2010-08-23 22:19:22 +08:00
{
using namespace cv::gpu::device::imgproc;
2010-11-08 17:55:10 +08:00
typedef void (*func_t)(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
2012-08-22 16:11:11 +08:00
static const func_t funcs[2][4] =
{
{reprojectImageTo3D_gpu<uchar, float3>, 0, 0, reprojectImageTo3D_gpu<short, float3>},
{reprojectImageTo3D_gpu<uchar, float4>, 0, 0, reprojectImageTo3D_gpu<short, float4>}
};
2010-11-08 17:55:10 +08:00
CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S);
CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous());
CV_Assert(dst_cn == 3 || dst_cn == 4);
2010-08-23 22:19:22 +08:00
xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn));
2010-11-08 17:55:10 +08:00
funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr<float>(), StreamAccessor::getStream(stream));
2010-08-23 22:19:22 +08:00
}
////////////////////////////////////////////////////////////////////////
// copyMakeBorder
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
template <typename T, int cn> void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream);
}
}}}
namespace
{
template <typename T, int cn> void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream)
{
using namespace ::cv::gpu::device::imgproc;
Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3]));
copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream);
}
}
#if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__ > 4
typedef Npp32s __attribute__((__may_alias__)) Npp32s_a;
#else
typedef Npp32s Npp32s_a;
#endif
void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value, Stream& s)
{
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
cudaStream_t stream = StreamAccessor::getStream(s);
if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
{
NppiSize srcsz;
srcsz.width = src.cols;
srcsz.height = src.rows;
NppiSize dstsz;
dstsz.width = dst.cols;
dstsz.height = dst.rows;
NppStreamHandler h(stream);
switch (src.type())
{
case CV_8UC1:
{
Npp8u nVal = saturate_cast<Npp8u>(value[0]);
nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_8UC4:
{
Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_32SC1:
{
Npp32s nVal = saturate_cast<Npp32s>(value[0]);
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
case CV_32FC1:
{
Npp32f val = saturate_cast<Npp32f>(value[0]);
Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val));
nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
break;
}
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
static const caller_t callers[6][4] =
{
{ copyMakeBorder_caller<uchar, 1> , 0/*copyMakeBorder_caller<uchar, 2>*/ , copyMakeBorder_caller<uchar, 3> , copyMakeBorder_caller<uchar, 4>},
{0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
{ copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/, copyMakeBorder_caller<ushort, 3> , copyMakeBorder_caller<ushort, 4>},
{ copyMakeBorder_caller<short, 1> , 0/*copyMakeBorder_caller<short, 2>*/ , copyMakeBorder_caller<short, 3> , copyMakeBorder_caller<short, 4>},
{0/*copyMakeBorder_caller<int, 1>*/ , 0/*copyMakeBorder_caller<int, 2>*/ , 0/*copyMakeBorder_caller<int, 3>*/ , 0/*copyMakeBorder_caller<int, 4>*/},
{ copyMakeBorder_caller<float, 1> , 0/*copyMakeBorder_caller<float, 2>*/ , copyMakeBorder_caller<float, 3> , copyMakeBorder_caller<float ,4>}
};
caller_t func = callers[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
2011-01-24 18:32:57 +08:00
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
func(src, dst, top, left, gpuBorderType, value, stream);
}
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T,
float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::device::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous());
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
2012-05-04 20:11:01 +08:00
device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::device::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
2012-05-04 20:11:01 +08:00
device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::device::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
2012-05-04 20:11:01 +08:00
device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// rotate
namespace
{
template<int DEPTH> struct NppTypeTraits;
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; };
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; };
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; };
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; };
template <int DEPTH> struct NppRotateFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
npp_t* pDst, int nDstStep, NppiRect oDstROI,
double nAngle, double nShiftX, double nShiftY, int eInterpolation);
};
template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate
{
typedef typename NppRotateFunc<DEPTH>::npp_t npp_t;
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
{
(void)dsize;
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
NppStreamHandler h(stream);
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi,
dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
{0,0,0,0},
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
{0,0,0,0},
{0,0,0,0},
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
};
2011-01-24 18:32:57 +08:00
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F);
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// integral
void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s)
{
GpuMat buffer;
integralBuffered(src, sum, buffer, s);
}
2012-08-22 16:11:11 +08:00
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void shfl_integral_gpu(PtrStepSzb img, PtrStepSz<unsigned int> integral, cudaStream_t stream);
2012-08-22 16:11:11 +08:00
}
}}}
void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s)
{
CV_Assert(src.type() == CV_8UC1);
2012-08-22 16:11:11 +08:00
cudaStream_t stream = StreamAccessor::getStream(s);
2012-08-22 16:11:11 +08:00
DeviceInfo info;
2012-08-22 16:11:11 +08:00
if (info.supports(WARP_SHUFFLE_FUNCTIONS))
{
2012-08-23 21:00:12 +08:00
GpuMat srcAlligned;
2012-08-23 21:00:12 +08:00
if (src.cols % 16 == 0 && src.rows % 8 == 0)
srcAlligned = src;
2012-08-22 16:11:11 +08:00
else
{
2012-08-23 21:00:12 +08:00
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 15) / 16) * 16, src.type(), buffer);
2012-08-22 16:11:11 +08:00
GpuMat inner = buffer(Rect(0, 0, src.cols, src.rows));
2012-08-22 16:11:11 +08:00
if (s)
{
s.enqueueMemSet(buffer, Scalar::all(0));
s.enqueueCopy(src, inner);
}
else
{
buffer.setTo(Scalar::all(0));
src.copyTo(inner);
}
2011-01-24 18:32:57 +08:00
2012-08-23 21:00:12 +08:00
srcAlligned = buffer;
2012-08-22 16:11:11 +08:00
}
2012-08-23 21:00:12 +08:00
sum.create(srcAlligned.rows + 1, srcAlligned.cols + 1, CV_32SC1);
2012-08-22 16:11:11 +08:00
if (s)
s.enqueueMemSet(sum, Scalar::all(0));
else
sum.setTo(Scalar::all(0));
2012-08-23 21:00:12 +08:00
GpuMat inner = sum(Rect(1, 1, srcAlligned.cols, srcAlligned.rows));
2012-08-22 16:11:11 +08:00
2012-08-23 21:00:12 +08:00
cv::gpu::device::imgproc::shfl_integral_gpu(srcAlligned, inner, stream);
2012-08-22 16:11:11 +08:00
2012-08-23 21:00:12 +08:00
if (srcAlligned.data != src.data)
2012-08-22 16:11:11 +08:00
sum = sum(Rect(0, 0, src.cols + 1, src.rows + 1));
}
else
{
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);
NppStStreamHandler h(stream);
ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
//////////////////////////////////////////////////////////////////////////////
// sqrIntegral
void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
{
CV_Assert(src.type() == CV_8U);
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
GpuMat buf(1, bufSize, CV_8U);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStStreamHandler h(stream);
sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
2011-08-08 19:28:14 +08:00
sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
2011-01-24 18:32:57 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////////
// columnSum
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void columnSum_32F(const PtrStepSzb src, const PtrStepSzb dst);
}
}}}
void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst)
{
using namespace ::cv::gpu::device::imgproc;
CV_Assert(src.type() == CV_32F);
dst.create(src.size(), CV_32F);
2012-05-04 20:11:01 +08:00
device::imgproc::columnSum_32F(src, dst);
}
void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s)
{
2012-01-30 21:15:20 +08:00
CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_64FC1);
dst.create(src.size(), CV_32FC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppiRect nppRect;
nppRect.height = rect.height;
nppRect.width = rect.width;
nppRect.x = rect.x;
nppRect.y = rect.y;
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// Histogram
namespace
{
typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
template<int SDEPTH> struct NppHistogramEvenFuncC1
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
};
template<int SDEPTH> struct NppHistogramEvenFuncC4
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
};
2010-11-08 17:55:10 +08:00
template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramEvenC1
2010-11-08 17:55:10 +08:00
{
typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
{
int levels = histSize + 1;
hist.create(1, histSize, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
2011-08-08 19:28:14 +08:00
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
2011-01-24 18:32:57 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2010-11-08 17:55:10 +08:00
};
template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramEvenC4
2010-11-08 17:55:10 +08:00
{
typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream)
{
int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
hist[0].create(1, histSize[0], CV_32S);
hist[1].create(1, histSize[1], CV_32S);
hist[2].create(1, histSize[2], CV_32S);
hist[3].create(1, histSize[3], CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int buf_size;
get_buf_size(sz, levels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
2011-08-08 19:28:14 +08:00
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
2011-01-24 18:32:57 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH> struct NppHistogramRangeFuncC1
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC1<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
};
template<int SDEPTH> struct NppHistogramRangeFuncC4
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC4<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
2010-11-08 17:55:10 +08:00
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
2010-11-08 17:55:10 +08:00
template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramRangeC1
2010-11-08 17:55:10 +08:00
{
typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream)
2010-11-08 17:55:10 +08:00
{
CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1);
hist.create(1, levels.cols - 1, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels.cols, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
2011-08-08 19:28:14 +08:00
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buffer.ptr<Npp8u>()) );
2011-01-24 18:32:57 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2010-11-08 17:55:10 +08:00
};
template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramRangeC4
2010-11-08 17:55:10 +08:00
{
typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream)
{
CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1);
CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1);
CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1);
CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1);
hist[0].create(1, levels[0].cols - 1, CV_32S);
hist[1].create(1, levels[1].cols - 1, CV_32S);
hist[2].create(1, levels[2].cols - 1, CV_32S);
hist[3].create(1, levels[3].cols - 1, CV_32S);
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, nLevels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
2011-08-08 19:28:14 +08:00
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) );
2011-01-24 18:32:57 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
2010-11-08 17:55:10 +08:00
};
}
void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel)
{
Mat host_levels(1, nLevels, CV_32SC1);
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
levels.upload(host_levels);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
GpuMat buf;
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream);
2010-11-08 17:55:10 +08:00
static const hist_t hist_callers[] =
{
NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
0,
NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
};
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
GpuMat buf;
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
2010-11-08 17:55:10 +08:00
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream);
2010-11-08 17:55:10 +08:00
static const hist_t hist_callers[] =
{
NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
0,
NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
};
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream)
{
GpuMat buf;
histRange(src, hist, levels, buf, stream);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1);
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream);
2010-11-08 17:55:10 +08:00
static const hist_t hist_callers[] =
{
NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
0,
NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
0,
NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
};
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
GpuMat buf;
histRange(src, hist, levels, buf, stream);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream)
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4);
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream);
2010-11-08 17:55:10 +08:00
static const hist_t hist_callers[] =
{
NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
0,
NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
0,
NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
};
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}
namespace cv { namespace gpu { namespace device
2011-08-01 21:15:37 +08:00
{
namespace hist
{
void histogram256_gpu(PtrStepSzb src, int* hist, unsigned int* buf, cudaStream_t stream);
const int PARTIAL_HISTOGRAM256_COUNT = 240;
const int HISTOGRAM256_BIN_COUNT = 256;
void equalizeHist_gpu(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
}
}}}
2011-08-01 21:15:37 +08:00
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream)
{
GpuMat buf;
calcHist(src, hist, buf, stream);
}
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream)
{
using namespace ::cv::gpu::device::hist;
2011-08-01 21:15:37 +08:00
CV_Assert(src.type() == CV_8UC1);
hist.create(1, 256, CV_32SC1);
ensureSizeIsEnough(1, PARTIAL_HISTOGRAM256_COUNT * HISTOGRAM256_BIN_COUNT, CV_32SC1, buf);
histogram256_gpu(src, hist.ptr<int>(), buf.ptr<unsigned int>(), StreamAccessor::getStream(stream));
}
2011-08-02 16:33:27 +08:00
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream)
{
GpuMat hist;
GpuMat buf;
equalizeHist(src, dst, hist, buf, stream);
}
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream)
{
GpuMat buf;
equalizeHist(src, dst, hist, buf, stream);
}
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s)
{
using namespace ::cv::gpu::device::hist;
2011-08-02 16:33:27 +08:00
CV_Assert(src.type() == CV_8UC1);
dst.create(src.size(), src.type());
int intBufSize;
nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );
2011-08-08 19:28:14 +08:00
int bufSize = static_cast<int>(std::max(256 * 240 * sizeof(int), intBufSize + 256 * sizeof(int)));
2011-08-02 16:33:27 +08:00
ensureSizeIsEnough(1, bufSize, CV_8UC1, buf);
GpuMat histBuf(1, 256 * 240, CV_32SC1, buf.ptr());
GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr());
GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize);
calcHist(src, hist, histBuf, s);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
2011-08-02 16:33:27 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
equalizeHist_gpu(src, dst, lut.ptr<int>(), stream);
}
////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
}
}}}
namespace
{
void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
if (ksize < 0)
scale *= 2.;
if (src.depth() == CV_8U)
scale *= 255.;
scale = 1./scale;
Dx.create(src.size(), CV_32F);
Dy.create(src.size(), CV_32F);
if (ksize > 0)
{
Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream);
Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream);
}
else
{
Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream);
Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream);
}
}
}
bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType)
{
switch (cpuBorderType)
{
case cv::BORDER_REFLECT101:
gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU;
return true;
case cv::BORDER_REPLICATE:
gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU;
return true;
case cv::BORDER_CONSTANT:
gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU;
return true;
case cv::BORDER_REFLECT:
gpuBorderType = cv::gpu::BORDER_REFLECT_GPU;
return true;
case cv::BORDER_WRAP:
gpuBorderType = cv::gpu::BORDER_WRAP_GPU;
return true;
default:
return false;
};
return false;
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType)
{
GpuMat Dx, Dy;
cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType);
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType)
{
GpuMat buf;
cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType);
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream)
{
using namespace cv::gpu::device::imgproc;
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
dst.create(src.size(), CV_32F);
cornerHarris_gpu(blockSize, static_cast<float>(k), Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType)
{
GpuMat Dx, Dy;
cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType);
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
{
GpuMat buf;
cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType);
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
dst.create(src.size(), CV_32F);
cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// mulSpectrums
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);
void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);
}
}}}
void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream)
{
(void)flags;
using namespace ::cv::gpu::device::imgproc;
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, PtrStepSz<cufftComplex>, cudaStream_t stream);
static Caller callers[] = { device::imgproc::mulSpectrums, device::imgproc::mulSpectrums_CONJ };
CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
CV_Assert(a.size() == b.size());
c.create(a.size(), CV_32FC2);
Caller caller = callers[(int)conjB];
caller(a, b, c, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);
void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);
}
}}}
void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream)
{
(void)flags;
using namespace ::cv::gpu::device::imgproc;
typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, float scale, PtrStepSz<cufftComplex>, cudaStream_t stream);
static Caller callers[] = { device::imgproc::mulAndScaleSpectrums, device::imgproc::mulAndScaleSpectrums_CONJ };
CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
CV_Assert(a.size() == b.size());
c.create(a.size(), CV_32FC2);
Caller caller = callers[(int)conjB];
caller(a, b, scale, c, StreamAccessor::getStream(stream));
}
2010-12-23 17:24:33 +08:00
//////////////////////////////////////////////////////////////////////////////
// dft
void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stream& stream)
2010-12-23 17:24:33 +08:00
{
#ifndef HAVE_CUFFT
OPENCV_GPU_UNUSED(src);
OPENCV_GPU_UNUSED(dst);
OPENCV_GPU_UNUSED(dft_size);
OPENCV_GPU_UNUSED(flags);
OPENCV_GPU_UNUSED(stream);
throw_nogpu();
#else
2010-12-23 17:24:33 +08:00
CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2);
// We don't support unpacked output (in the case of real input)
CV_Assert(!(flags & DFT_COMPLEX_OUTPUT));
2010-12-27 15:35:41 +08:00
bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
2010-12-23 17:24:33 +08:00
int is_row_dft = flags & DFT_ROWS;
int is_scaled_dft = flags & DFT_SCALE;
int is_inverse = flags & DFT_INVERSE;
bool is_complex_input = src.channels() == 2;
bool is_complex_output = !(flags & DFT_REAL_OUTPUT);
// We don't support real-to-real transform
CV_Assert(is_complex_input || is_complex_output);
GpuMat src_data;
2010-12-23 17:24:33 +08:00
// Make sure here we work with the continuous input,
2010-12-23 17:24:33 +08:00
// as CUFFT can't handle gaps
src_data = src;
createContinuous(src.rows, src.cols, src.type(), src_data);
if (src_data.data != src.data)
src.copyTo(src_data);
2010-12-23 17:24:33 +08:00
Size dft_size_opt = dft_size;
if (is_1d_input && !is_row_dft)
2010-12-27 15:35:41 +08:00
{
// If the source matrix is single column handle it as single row
dft_size_opt.width = std::max(dft_size.width, dft_size.height);
dft_size_opt.height = std::min(dft_size.width, dft_size.height);
2010-12-27 15:35:41 +08:00
}
2010-12-23 17:24:33 +08:00
cufftType dft_type = CUFFT_R2C;
if (is_complex_input)
2010-12-23 17:24:33 +08:00
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
CV_Assert(dft_size_opt.width > 1);
2010-12-23 17:24:33 +08:00
cufftHandle plan;
if (is_1d_input || is_row_dft)
cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height);
2010-12-23 17:24:33 +08:00
else
cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type);
2010-12-23 17:24:33 +08:00
cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );
2010-12-23 17:24:33 +08:00
if (is_complex_input)
{
if (is_complex_output)
{
2010-12-27 15:35:41 +08:00
createContinuous(dft_size, CV_32FC2, dst);
2010-12-23 17:24:33 +08:00
cufftSafeCall(cufftExecC2C(
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
2010-12-23 17:24:33 +08:00
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
}
else
{
2010-12-27 15:35:41 +08:00
createContinuous(dft_size, CV_32F, dst);
2010-12-23 17:24:33 +08:00
cufftSafeCall(cufftExecC2R(
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
2010-12-23 17:24:33 +08:00
}
}
else
{
// We could swap dft_size for efficiency. Here we must reflect it
if (dft_size == dft_size_opt)
2010-12-27 15:35:41 +08:00
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst);
else
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst);
2010-12-23 17:24:33 +08:00
cufftSafeCall(cufftExecR2C(
plan, src_data.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
2010-12-23 17:24:33 +08:00
}
cufftSafeCall(cufftDestroy(plan));
if (is_scaled_dft)
multiply(dst, Scalar::all(1. / dft_size.area()), dst, 1, -1, stream);
#endif
2010-12-23 17:24:33 +08:00
}
//////////////////////////////////////////////////////////////////////////////
// convolve
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
{
result_size = Size(image_size.width - templ_size.width + 1,
image_size.height - templ_size.height + 1);
block_size = user_block_size;
if (user_block_size.width == 0 || user_block_size.height == 0)
block_size = estimateBlockSize(result_size, templ_size);
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide
if (dft_size.width > 8192)
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
if (dft_size.height > 8192)
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
// To avoid wasting time doing small DFTs
dft_size.width = std::max(dft_size.width, 512);
dft_size.height = std::max(dft_size.height, 512);
createContinuous(dft_size, CV_32F, image_block);
createContinuous(dft_size, CV_32F, templ_block);
createContinuous(dft_size, CV_32F, result_data);
spect_len = dft_size.height * (dft_size.width / 2 + 1);
createContinuous(1, spect_len, CV_32FC2, image_spect);
createContinuous(1, spect_len, CV_32FC2, templ_spect);
createContinuous(1, spect_len, CV_32FC2, result_spect);
// Use maximum result matrix block size for the estimated DFT block size
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
}
Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/)
{
int width = (result_size.width + 2) / 3;
int height = (result_size.height + 2) / 3;
width = std::min(width, result_size.width);
2012-08-22 16:11:11 +08:00
height = std::min(height, result_size.height);
return Size(width, height);
}
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr)
{
ConvolveBuf buf;
convolve(image, templ, result, ccorr, buf);
}
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream)
{
using namespace ::cv::gpu::device::imgproc;
#ifndef HAVE_CUFFT
throw_nogpu();
#else
StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();
CV_Assert(image.type() == CV_32F);
CV_Assert(templ.type() == CV_32F);
buf.create(image.size(), templ.size());
result.create(buf.result_size, CV_32F);
Size& block_size = buf.block_size;
Size& dft_size = buf.dft_size;
GpuMat& image_block = buf.image_block;
GpuMat& templ_block = buf.templ_block;
GpuMat& result_data = buf.result_data;
GpuMat& image_spect = buf.image_spect;
GpuMat& templ_spect = buf.templ_spect;
GpuMat& result_spect = buf.result_spect;
cufftHandle planR2C, planC2R;
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
2012-08-22 16:11:11 +08:00
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
templ_spect.ptr<cufftComplex>()));
// Process all blocks of the result matrix
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
2010-12-24 20:55:43 +08:00
{
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>()));
mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1.f / dft_size.area(), ccorr, stream);
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
result_data.ptr<cufftReal>()));
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(),
(void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
if (stream)
stream.enqueueCopy(result_block, result_roi);
else
result_block.copyTo(result_roi);
}
}
cufftSafeCall(cufftDestroy(planR2C));
cufftSafeCall(cufftDestroy(planC2R));
#endif
}
2011-08-08 16:53:55 +08:00
//////////////////////////////////////////////////////////////////////////////
// Canny
cv::gpu::CannyBuf::CannyBuf(const GpuMat& dx_, const GpuMat& dy_) : dx(dx_), dy(dy_)
{
CV_Assert(dx_.type() == CV_32SC1 && dy_.type() == CV_32SC1 && dx_.size() == dy_.size());
create(dx_.size(), -1);
}
void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size)
{
ensureSizeIsEnough(image_size, CV_32SC1, dx);
ensureSizeIsEnough(image_size, CV_32SC1, dy);
if (apperture_size == 3)
{
ensureSizeIsEnough(image_size, CV_32SC1, dx_buf);
ensureSizeIsEnough(image_size, CV_32SC1, dy_buf);
}
else if(apperture_size > 0)
{
if (!filterDX)
filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
if (!filterDY)
filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
}
ensureSizeIsEnough(image_size.height + 2, image_size.width + 2, CV_32FC1, edgeBuf);
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf1);
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf2);
}
void cv::gpu::CannyBuf::release()
{
dx.release();
dy.release();
dx_buf.release();
dy_buf.release();
edgeBuf.release();
trackBuf1.release();
trackBuf2.release();
}
namespace cv { namespace gpu { namespace device
{
namespace canny
{
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols);
2011-08-08 16:53:55 +08:00
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
2011-08-08 16:53:55 +08:00
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh);
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols);
2011-08-08 16:53:55 +08:00
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols);
void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols);
}
}}}
2011-08-08 16:53:55 +08:00
namespace
{
void CannyCaller(CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
{
using namespace ::cv::gpu::device::canny;
2011-08-08 16:53:55 +08:00
calcMap_gpu(buf.dx, buf.dy, buf.edgeBuf, buf.edgeBuf, dst.rows, dst.cols, low_thresh, high_thresh);
2011-08-08 16:53:55 +08:00
edgesHysteresisLocal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), dst.rows, dst.cols);
2011-08-08 16:53:55 +08:00
edgesHysteresisGlobal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), buf.trackBuf2.ptr<ushort2>(), dst.rows, dst.cols);
2011-08-08 16:53:55 +08:00
getEdges_gpu(buf.edgeBuf, dst, dst.rows, dst.cols);
}
}
void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
CannyBuf buf(src.size(), apperture_size);
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
}
void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
using namespace ::cv::gpu::device::canny;
2011-08-08 16:53:55 +08:00
CV_Assert(src.type() == CV_8UC1);
if (!TargetArchs::builtWith(SHARED_ATOMICS) || !DeviceInfo().supports(SHARED_ATOMICS))
CV_Error(CV_StsNotImplemented, "The device doesn't support shared atomics");
2011-08-08 16:53:55 +08:00
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);
dst.create(src.size(), CV_8U);
dst.setTo(Scalar::all(0));
2011-08-08 16:53:55 +08:00
buf.create(src.size(), apperture_size);
buf.edgeBuf.setTo(Scalar::all(0));
if (apperture_size == 3)
{
calcSobelRowPass_gpu(src, buf.dx_buf, buf.dy_buf, src.rows, src.cols);
calcMagnitude_gpu(buf.dx_buf, buf.dy_buf, buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
}
else
{
buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows));
buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows));
calcMagnitude_gpu(buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
}
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
CannyBuf buf(dx, dy);
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
}
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
using namespace ::cv::gpu::device::canny;
2011-08-08 16:53:55 +08:00
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
2011-08-08 16:53:55 +08:00
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);
dst.create(dx.size(), CV_8U);
dst.setTo(Scalar::all(0));
2011-08-08 16:53:55 +08:00
buf.dx = dx; buf.dy = dy;
buf.create(dx.size(), -1);
buf.edgeBuf.setTo(Scalar::all(0));
calcMagnitude_gpu(dx, dy, buf.edgeBuf, dx.rows, dx.cols, L2gradient);
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
#endif /* !defined (HAVE_CUDA) */