2010-07-28 22:46:44 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int) { throw_nogpu(); }
|
2010-07-28 22:46:44 +08:00
|
|
|
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int, int, int, float, float, float) { throw_nogpu(); }
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, const CudaStream&) { throw_nogpu(); }
|
|
|
|
|
|
|
|
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable() { throw_nogpu(); return false; }
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
static const float DEFAULT_DISC_COST = 1.7f;
|
|
|
|
static const float DEFAULT_DATA_COST = 10.0f;
|
|
|
|
static const float DEFAULT_LAMBDA_COST = 0.07f;
|
|
|
|
|
2010-07-28 22:46:44 +08:00
|
|
|
typedef DevMem2D_<float> DevMem2Df;
|
2010-07-29 16:47:06 +08:00
|
|
|
typedef DevMem2D_<int> DevMem2Di;
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace impl {
|
|
|
|
extern "C" void load_constants(int ndisp, float disc_cost, float data_cost, float lambda);
|
2010-07-29 15:20:35 +08:00
|
|
|
extern "C" void comp_data_caller(const DevMem2D& l, const DevMem2D& r, DevMem2Df mdata, const cudaStream_t& stream);
|
|
|
|
extern "C" void data_down_kernel_caller(int dst_cols, int dst_rows, int src_rows, const DevMem2Df& src, DevMem2Df dst, const cudaStream_t& stream);
|
|
|
|
extern "C" void level_up(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Df* mu, DevMem2Df* md, DevMem2Df* ml, DevMem2Df* mr, const cudaStream_t& stream);
|
|
|
|
extern "C" void call_all_iterations(int cols, int rows, int iters, DevMem2Df& u, DevMem2Df& d, DevMem2Df& l, DevMem2Df& r, const DevMem2Df& data, const cudaStream_t& stream);
|
2010-07-29 16:47:06 +08:00
|
|
|
extern "C" void output_caller(const DevMem2Df& u, const DevMem2Df& d, const DevMem2Df& l, const DevMem2Df& r, const DevMem2Df& data, DevMem2Di disp, const cudaStream_t& stream);
|
2010-07-28 22:46:44 +08:00
|
|
|
}}}
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_)
|
|
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), disc_cost(DEFAULT_DISC_COST), data_cost(DEFAULT_DATA_COST), lambda(DEFAULT_LAMBDA_COST), datas(levels_)
|
|
|
|
{
|
2010-07-29 16:47:06 +08:00
|
|
|
CV_Assert(0 < ndisp);
|
2010-07-29 15:20:35 +08:00
|
|
|
CV_Assert(ndisp % 8 == 0);
|
|
|
|
}
|
|
|
|
|
2010-07-28 22:46:44 +08:00
|
|
|
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, float disc_cost_, float data_cost_, float lambda_)
|
|
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), disc_cost(disc_cost_), data_cost(data_cost_), lambda(lambda_), datas(levels_)
|
|
|
|
{
|
2010-07-29 16:47:06 +08:00
|
|
|
CV_Assert(0 < ndisp);
|
2010-07-28 22:46:44 +08:00
|
|
|
CV_Assert(ndisp % 8 == 0);
|
|
|
|
}
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
static void stereo_bp_gpu_operator(int ndisp, int iters, int levels, float disc_cost, float data_cost, float lambda,
|
|
|
|
GpuMat& u, GpuMat& d, GpuMat& l, GpuMat& r,
|
2010-07-29 16:47:06 +08:00
|
|
|
GpuMat& u2, GpuMat& d2, GpuMat& l2, GpuMat& r2,
|
|
|
|
vector<GpuMat>& datas, GpuMat& out,
|
2010-07-29 15:20:35 +08:00
|
|
|
const GpuMat& left, const GpuMat& right, GpuMat& disp,
|
|
|
|
const cudaStream_t& stream)
|
|
|
|
{
|
2010-07-28 22:46:44 +08:00
|
|
|
CV_DbgAssert(left.cols == right.cols && left.rows == right.rows && left.type() == right.type() && left.type() == CV_8U);
|
|
|
|
|
|
|
|
const Scalar zero = Scalar::all(0);
|
|
|
|
|
|
|
|
int rows = left.rows;
|
|
|
|
int cols = left.cols;
|
|
|
|
|
|
|
|
int divisor = (int)pow(2.f, levels - 1.0f);
|
|
|
|
int lowest_cols = cols / divisor;
|
|
|
|
int lowest_rows = rows / divisor;
|
|
|
|
const int min_image_dim_size = 20;
|
|
|
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
|
|
|
|
|
|
|
|
u.create(rows * ndisp, cols, CV_32F);
|
|
|
|
d.create(rows * ndisp, cols, CV_32F);
|
|
|
|
l.create(rows * ndisp, cols, CV_32F);
|
2010-07-29 15:20:35 +08:00
|
|
|
r.create(rows * ndisp, cols, CV_32F);
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
if (levels & 1)
|
|
|
|
{
|
|
|
|
u = zero; //can clear less area
|
|
|
|
d = zero;
|
|
|
|
l = zero;
|
|
|
|
r = zero;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (levels > 1)
|
|
|
|
{
|
|
|
|
int less_rows = (rows + 1) / 2;
|
|
|
|
int less_cols = (cols + 1) / 2;
|
|
|
|
|
|
|
|
u2.create(less_rows * ndisp, less_cols, CV_32F);
|
|
|
|
d2.create(less_rows * ndisp, less_cols, CV_32F);
|
|
|
|
l2.create(less_rows * ndisp, less_cols, CV_32F);
|
|
|
|
r2.create(less_rows * ndisp, less_cols, CV_32F);
|
|
|
|
|
|
|
|
if ((levels & 1) == 0)
|
|
|
|
{
|
|
|
|
u2 = zero;
|
|
|
|
d2 = zero;
|
|
|
|
l2 = zero;
|
|
|
|
r2 = zero;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl::load_constants(ndisp, disc_cost, data_cost, lambda);
|
2010-07-29 16:47:06 +08:00
|
|
|
|
|
|
|
datas.resize(levels);
|
|
|
|
|
|
|
|
AutoBuffer<int> cols_all_buf(levels);
|
|
|
|
AutoBuffer<int> rows_all_buf(levels);
|
|
|
|
AutoBuffer<int> iters_all_buf(levels);
|
|
|
|
|
|
|
|
int *cols_all = cols_all_buf;
|
|
|
|
int *rows_all = rows_all_buf;
|
|
|
|
int *iters_all = iters_all_buf;
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
cols_all[0] = cols;
|
|
|
|
rows_all[0] = rows;
|
|
|
|
iters_all[0] = iters;
|
|
|
|
|
|
|
|
datas[0].create(rows * ndisp, cols, CV_32F);
|
|
|
|
//datas[0] = Scalar(data_cost); //DOTO did in kernel, but not sure if correct
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
impl::comp_data_caller(left, right, datas.front(), stream);
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
for (int i = 1; i < levels; i++)
|
|
|
|
{
|
|
|
|
cols_all[i] = (cols_all[i-1] + 1)/2;
|
|
|
|
rows_all[i] = (rows_all[i-1] + 1)/2;
|
|
|
|
|
|
|
|
// this is difference from Felzenszwalb algorithm
|
|
|
|
// we reduce iters num for each next level
|
|
|
|
iters_all[i] = max(2 * iters_all[i-1] / 3, 1);
|
|
|
|
|
|
|
|
datas[i].create(rows_all[i] * ndisp, cols_all[i], CV_32F);
|
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
impl::data_down_kernel_caller(cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], stream);
|
2010-07-28 22:46:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
DevMem2D_<float> mus[] = {u, u2};
|
|
|
|
DevMem2D_<float> mds[] = {d, d2};
|
|
|
|
DevMem2D_<float> mrs[] = {r, r2};
|
|
|
|
DevMem2D_<float> mls[] = {l, l2};
|
|
|
|
|
|
|
|
int mem_idx = (levels & 1) ? 0 : 1;
|
|
|
|
|
|
|
|
for (int i = levels - 1; i >= 0; i--) // for lower level we have already computed messages by setting to zero
|
|
|
|
{
|
|
|
|
if (i != levels - 1)
|
2010-07-29 15:20:35 +08:00
|
|
|
impl::level_up(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, stream);
|
2010-07-28 22:46:44 +08:00
|
|
|
|
2010-07-29 15:20:35 +08:00
|
|
|
impl::call_all_iterations(cols_all[i], rows_all[i], iters_all[i], mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
|
2010-07-28 22:46:44 +08:00
|
|
|
|
|
|
|
mem_idx = (mem_idx + 1) & 1;
|
|
|
|
}
|
2010-07-29 16:47:06 +08:00
|
|
|
|
|
|
|
if (disp.empty())
|
|
|
|
disp.create(rows, cols, CV_32S);
|
2010-07-28 22:46:44 +08:00
|
|
|
|
2010-07-29 16:47:06 +08:00
|
|
|
if (disp.type() == CV_32S)
|
|
|
|
{
|
|
|
|
disp = zero;
|
|
|
|
impl::output_caller(u, d, l, r, datas.front(), disp, stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
out.create(rows, cols, CV_32S);
|
|
|
|
out = zero;
|
|
|
|
|
|
|
|
impl::output_caller(u, d, l, r, datas.front(), out, stream);
|
|
|
|
|
|
|
|
out.convertTo(disp, disp.type());
|
|
|
|
}
|
2010-07-29 15:20:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
|
|
|
|
{
|
2010-07-29 16:47:06 +08:00
|
|
|
::stereo_bp_gpu_operator(ndisp, iters, levels, disc_cost, data_cost, lambda, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, 0);
|
2010-07-29 15:20:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::StereoBeliefPropagation_GPU::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const CudaStream& stream)
|
|
|
|
{
|
2010-07-29 16:47:06 +08:00
|
|
|
::stereo_bp_gpu_operator(ndisp, iters, levels, disc_cost, data_cost, lambda, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, StreamAccessor::getStream(stream));
|
2010-07-29 15:20:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::gpu::StereoBeliefPropagation_GPU::checkIfGpuCallReasonable()
|
|
|
|
{
|
|
|
|
if (0 == getCudaEnabledDeviceCount())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int device = getDevice();
|
|
|
|
|
|
|
|
int minor, major;
|
|
|
|
getComputeCapability(device, &major, &minor);
|
|
|
|
int numSM = getNumberOfSMs(device);
|
|
|
|
|
|
|
|
if (major > 1 || numSM > 16)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
2010-07-28 22:46:44 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|