opencv/modules/imgproc/src/sumpixels.avx512_skx.cpp

263 lines
11 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019, Intel Corporation, all rights reserved.
#include "precomp.hpp"
#include "sumpixels.hpp"
namespace cv {
namespace { // Anonymous namespace to avoid exposing the implementation classes
//
// NOTE: Look at the bottom of the file for the entry-point function for external callers
//
// At the moment only 3 channel support untilted is supported
// More channel support coming soon.
// TODO: Add support for sqsum and 1,2, and 4 channels
class IntegralCalculator_3Channel {
public:
IntegralCalculator_3Channel() {};
void calculate_integral_avx512(const uchar *src, size_t _srcstep,
double *sum, size_t _sumstep,
double *sqsum, size_t _sqsumstep,
int width, int height, int cn)
{
const int srcstep = (int)(_srcstep/sizeof(uchar));
const int sumstep = (int)(_sumstep/sizeof(double));
const int sqsumstep = (int)(_sqsumstep/sizeof(double));
const int ops_per_line = width * cn;
// Clear the first line of the sum as per spec (see integral documentation)
// Also adjust the index of sum and sqsum to be at the real 0th element
// and not point to the border pixel so it stays in sync with the src pointer
memset( sum, 0, (ops_per_line+cn)*sizeof(double));
sum += cn;
if (sqsum) {
memset( sqsum, 0, (ops_per_line+cn)*sizeof(double));
sqsum += cn;
}
// Now calculate the integral over the whole image one line at a time
for(int y = 0; y < height; y++) {
const uchar * src_line = &src[y*srcstep];
double * sum_above = &sum[y*sumstep];
double * sum_line = &sum_above[sumstep];
double * sqsum_above = (sqsum) ? &sqsum[y*sqsumstep] : NULL;
double * sqsum_line = (sqsum) ? &sqsum_above[sqsumstep] : NULL;
integral_line_3channel_avx512(src_line, sum_line, sum_above, sqsum_line, sqsum_above, ops_per_line);
}
}
static inline
void integral_line_3channel_avx512(const uchar *srcs,
double *sums, double *sums_above,
double *sqsums, double *sqsums_above,
int num_ops_in_line)
{
__m512i sum_accumulator = _mm512_setzero_si512(); // holds rolling sums for the line
__m512i sqsum_accumulator = _mm512_setzero_si512(); // holds rolling sqsums for the line
// The first element on each line must be zeroes as per spec (see integral documentation)
set_border_pixel_value(sums, sqsums);
// Do all 64 byte chunk operations then do the last bits that don't fit in a 64 byte chunk
aligned_integral( srcs, sums, sums_above, sqsums, sqsums_above, sum_accumulator, sqsum_accumulator, num_ops_in_line);
post_aligned_integral(srcs, sums, sums_above, sqsums, sqsums_above, sum_accumulator, sqsum_accumulator, num_ops_in_line);
}
static inline
void set_border_pixel_value(double *sums, double *sqsums)
{
// Sets the border pixel value to 0s.
// Note the hard coded -3 and the 0x7 mask is because we only support 3 channel right now
__m512i zeroes = _mm512_setzero_si512();
_mm512_mask_storeu_epi64(&sums[-3], 0x7, zeroes);
if (sqsums)
_mm512_mask_storeu_epi64(&sqsums[-3], 0x7, zeroes);
}
static inline
void aligned_integral(const uchar *&srcs,
double *&sums, double *&sums_above,
double *&sqsum, double *&sqsum_above,
__m512i &sum_accumulator, __m512i &sqsum_accumulator,
int num_ops_in_line)
{
// This function handles full 64 byte chunks of the source data at a time until it gets to the part of
// the line that no longer contains a full 64 byte chunk. Other code will handle the last part.
const int num_chunks = num_ops_in_line >> 6; // quick int divide by 64
for (int index_64byte_chunk = 0; index_64byte_chunk < num_chunks; index_64byte_chunk++){
integral_64_operations_avx512((__m512i *) srcs,
(__m512i *) sums, (__m512i *) sums_above,
(__m512i *) sqsum, (__m512i *) sqsum_above,
0xFFFFFFFFFFFFFFFF, sum_accumulator, sqsum_accumulator);
srcs+=64; sums+=64; sums_above+=64;
if (sqsum){ sqsum+= 64; sqsum_above+=64; }
}
}
static inline
void post_aligned_integral(const uchar *srcs,
const double *sums, const double *sums_above,
const double *sqsum, const double *sqsum_above,
__m512i &sum_accumulator, __m512i &sqsum_accumulator,
int num_ops_in_line)
{
// This function handles the last few straggling operations that are not a full chunk of 64 operations
// We use the same algorithm, but we calculate a different operation mask using (num_ops % 64).
const unsigned int num_operations = (unsigned int) num_ops_in_line & 0x3F; // Quick int modulo 64
if (num_operations > 0) {
__mmask64 operation_mask = (1ULL << num_operations) - 1ULL;
integral_64_operations_avx512((__m512i *) srcs, (__m512i *) sums, (__m512i *) sums_above,
(__m512i *) sqsum, (__m512i *) sqsum_above,
operation_mask, sum_accumulator, sqsum_accumulator);
}
}
static inline
void integral_64_operations_avx512(const __m512i *srcs,
__m512i *sums, const __m512i *sums_above,
__m512i *sqsums, const __m512i *sqsums_above,
__mmask64 data_mask,
__m512i &sum_accumulator, __m512i &sqsum_accumulator)
{
__m512i src_64byte_chunk = read_64_bytes(srcs, data_mask);
for(int num_16byte_chunks=0; num_16byte_chunks<4; num_16byte_chunks++) {
__m128i src_16bytes = _mm512_extracti64x2_epi64(src_64byte_chunk, 0x0); // Get lower 16 bytes of data
for (int num_8byte_chunks = 0; num_8byte_chunks < 2; num_8byte_chunks++) {
__m512i src_longs = convert_lower_8bytes_to_longs(src_16bytes);
// Calculate integral for the sum on the 8 entries
integral_8_operations(src_longs, sums_above, data_mask, sums, sum_accumulator);
sums++; sums_above++;
if (sqsums){ // Calculate integral for the sum on the 8 entries
__m512i squared_source = _mm512_mullo_epi64(src_longs, src_longs);
integral_8_operations(squared_source, sqsums_above, data_mask, sqsums, sqsum_accumulator);
sqsums++; sqsums_above++;
}
// Prepare for next iteration of inner loop
// shift source to align next 8 bytes to lane 0 and shift the mask
src_16bytes = shift_right_8_bytes(src_16bytes);
data_mask = data_mask >> 8;
}
// Prepare for next iteration of outer loop
src_64byte_chunk = shift_right_16_bytes(src_64byte_chunk);
}
}
static inline
void integral_8_operations(const __m512i src_longs, const __m512i *above_values_ptr, __mmask64 data_mask,
__m512i *results_ptr, __m512i &accumulator)
{
_mm512_mask_storeu_pd(
results_ptr, // Store the result here
data_mask, // Using the data mask to avoid overrunning the line
calculate_integral( // Writing the value of the integral derived from:
src_longs, // input data
_mm512_maskz_loadu_pd(data_mask, above_values_ptr), // and the results from line above
accumulator // keeping track of the accumulator
)
);
}
static inline
__m512d calculate_integral(__m512i src_longs, const __m512d above_values, __m512i &accumulator)
{
__m512i carryover_idxs = _mm512_set_epi64(6, 5, 7, 6, 5, 7, 6, 5);
// Align data to prepare for the adds:
// shifts data left by 3 and 6 qwords(lanes) and gets rolling sum in all lanes
// Vertical LANES: 76543210
// src_longs : HGFEDCBA
// shited3lanes : + EDCBA
// shifted6lanes : + BA
// carry_over_idxs : + 65765765 (index position of result from previous iteration)
// = integral
__m512i shifted3lanes = _mm512_maskz_expand_epi64(0xF8, src_longs);
__m512i shifted6lanes = _mm512_maskz_expand_epi64(0xC0, src_longs);
__m512i carry_over = _mm512_permutex2var_epi64(accumulator, carryover_idxs, accumulator);
// Do the adds in tree form (shift3 + shift 6) + (current_source_values + accumulator)
__m512i sum_shift3and6 = _mm512_add_epi64(shifted3lanes, shifted6lanes);
__m512i sum_src_carry = _mm512_add_epi64(src_longs, carry_over);
accumulator = _mm512_add_epi64(sum_shift3and6, sum_src_carry);
// Convert to packed double and add to the line above to get the true integral value
__m512d accumulator_pd = _mm512_cvtepu64_pd(accumulator);
__m512d integral_pd = _mm512_add_pd(accumulator_pd, above_values);
return integral_pd;
}
static inline
__m512i read_64_bytes(const __m512i *srcs, __mmask64 data_mask) {
return _mm512_maskz_loadu_epi8(data_mask, srcs);
}
static inline
__m512i convert_lower_8bytes_to_longs(__m128i src_16bytes) {
return _mm512_cvtepu8_epi64(src_16bytes);
}
static inline
__m128i shift_right_8_bytes(__m128i src_16bytes) {
return _mm_maskz_compress_epi64(2, src_16bytes);
}
static inline
__m512i shift_right_16_bytes(__m512i src_64byte_chunk) {
return _mm512_maskz_compress_epi64(0xFC, src_64byte_chunk);
}
};
} // end of anonymous namespace
namespace opt_AVX512_SKX {
// This is the implementation for the external callers interface entry point.
// It should be the only function called into this file from outside
// Any new implementations should be directed from here
void calculate_integral_avx512(const uchar *src, size_t _srcstep,
double *sum, size_t _sumstep,
double *sqsum, size_t _sqsumstep,
int width, int height, int cn)
{
IntegralCalculator_3Channel calculator;
calculator.calculate_integral_avx512(src, _srcstep, sum, _sumstep, sqsum, _sqsumstep, width, height, cn);
}
} // end namespace opt_AVX512_SXK
} // end namespace cv