opencv/modules/features2d/src/evaluation.cpp

513 lines
19 KiB
C++
Raw Normal View History

//*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
using namespace cv;
using namespace std;
static inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt )
{
double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2);
if( z )
{
double w = 1./z;
return Point2f( (float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w) );
}
return Point2f( numeric_limits<float>::max(), numeric_limits<float>::max() );
}
static inline void linearizeHomographyAt( const Mat_<double>& H, const Point2f& pt, Mat_<double>& A )
{
A.create(2,2);
double p1 = H(0,0)*pt.x + H(0,1)*pt.y + H(0,2),
p2 = H(1,0)*pt.x + H(1,1)*pt.y + H(1,2),
p3 = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2),
p3_2 = p3*p3;
if( p3 )
{
A(0,0) = H(0,0)/p3 - p1*H(2,0)/p3_2; // fxdx
A(0,1) = H(0,1)/p3 - p1*H(2,1)/p3_2; // fxdy
A(1,0) = H(1,0)/p3 - p2*H(2,0)/p3_2; // fydx
A(1,1) = H(1,1)/p3 - p2*H(2,1)/p3_2; // fydx
}
else
A.setTo(Scalar::all(numeric_limits<double>::max()));
}
class EllipticKeyPoint
{
public:
EllipticKeyPoint();
EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse );
static void convert( const vector<KeyPoint>& src, vector<EllipticKeyPoint>& dst );
static void convert( const vector<EllipticKeyPoint>& src, vector<KeyPoint>& dst );
static Mat_<double> getSecondMomentsMatrix( const Scalar& _ellipse );
Mat_<double> getSecondMomentsMatrix() const;
void calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const;
static void calcProjection( const vector<EllipticKeyPoint>& src, const Mat_<double>& H, vector<EllipticKeyPoint>& dst );
Point2f center;
Scalar ellipse; // 3 elements a, b, c: ax^2+2bxy+cy^2=1
Size_<float> axes; // half lenght of elipse axes
Size_<float> boundingBox; // half sizes of bounding box which sides are parallel to the coordinate axes
};
EllipticKeyPoint::EllipticKeyPoint()
{
*this = EllipticKeyPoint(Point2f(0,0), Scalar(1, 0, 1) );
}
EllipticKeyPoint::EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse )
{
center = _center;
ellipse = _ellipse;
Mat_<double> M = getSecondMomentsMatrix(_ellipse), eval;
eigen( M, eval );
assert( eval.rows == 2 && eval.cols == 1 );
axes.width = 1.f / (float)sqrt(eval(0,0));
axes.height = 1.f / (float)sqrt(eval(1,0));
double ac_b2 = ellipse[0]*ellipse[2] - ellipse[1]*ellipse[1];
boundingBox.width = (float)sqrt(ellipse[2]/ac_b2);
boundingBox.height = (float)sqrt(ellipse[0]/ac_b2);
}
Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix( const Scalar& _ellipse )
{
Mat_<double> M(2, 2);
M(0,0) = _ellipse[0];
M(1,0) = M(0,1) = _ellipse[1];
M(1,1) = _ellipse[2];
return M;
}
Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix() const
{
return getSecondMomentsMatrix(ellipse);
}
void EllipticKeyPoint::calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const
{
Point2f dstCenter = applyHomography(H, center);
Mat_<double> invM; invert(getSecondMomentsMatrix(), invM);
Mat_<double> Aff; linearizeHomographyAt(H, center, Aff);
Mat_<double> dstM; invert(Aff*invM*Aff.t(), dstM);
projection = EllipticKeyPoint( dstCenter, Scalar(dstM(0,0), dstM(0,1), dstM(1,1)) );
}
void EllipticKeyPoint::convert( const vector<KeyPoint>& src, vector<EllipticKeyPoint>& dst )
{
if( !src.empty() )
{
dst.resize(src.size());
for( size_t i = 0; i < src.size(); i++ )
{
float rad = src[i].size/2;
assert( rad );
float fac = 1.f/(rad*rad);
dst[i] = EllipticKeyPoint( src[i].pt, Scalar(fac, 0, fac) );
}
}
}
void EllipticKeyPoint::convert( const vector<EllipticKeyPoint>& src, vector<KeyPoint>& dst )
{
if( !src.empty() )
{
dst.resize(src.size());
for( size_t i = 0; i < src.size(); i++ )
{
Size_<float> axes = src[i].axes;
float rad = sqrt(axes.height*axes.width);
dst[i] = KeyPoint(src[i].center, 2*rad );
}
}
}
void EllipticKeyPoint::calcProjection( const vector<EllipticKeyPoint>& src, const Mat_<double>& H, vector<EllipticKeyPoint>& dst )
{
if( !src.empty() )
{
assert( !H.empty() && H.cols == 3 && H.rows == 3);
dst.resize(src.size());
vector<EllipticKeyPoint>::const_iterator srcIt = src.begin();
vector<EllipticKeyPoint>::iterator dstIt = dst.begin();
for( ; srcIt != src.end(); ++srcIt, ++dstIt )
srcIt->calcProjection(H, *dstIt);
}
}
static void filterEllipticKeyPointsByImageSize( vector<EllipticKeyPoint>& keypoints, const Size& imgSize )
{
if( !keypoints.empty() )
{
vector<EllipticKeyPoint> filtered;
filtered.reserve(keypoints.size());
vector<EllipticKeyPoint>::const_iterator it = keypoints.begin();
for( int i = 0; it != keypoints.end(); ++it, i++ )
{
if( it->center.x + it->boundingBox.width < imgSize.width &&
it->center.x - it->boundingBox.width > 0 &&
it->center.y + it->boundingBox.height < imgSize.height &&
it->center.y - it->boundingBox.height > 0 )
filtered.push_back(*it);
}
keypoints.assign(filtered.begin(), filtered.end());
}
}
static void overlap( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticKeyPoint>& keypoints2t, bool commonPart,
SparseMat_<float>& overlaps )
{
overlaps.clear();
if( keypoints1.empty() || keypoints2t.empty() )
return;
int size[] = { keypoints1.size(), keypoints2t.size() };
overlaps.create( 2, size );
for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
{
EllipticKeyPoint kp1 = keypoints1[i1];
float maxDist = sqrt(kp1.axes.width*kp1.axes.height),
fac = 30.f/maxDist;
if( !commonPart )
fac=3;
maxDist = maxDist*4;
fac = 1.f/(fac*fac);
EllipticKeyPoint keypoint1a = EllipticKeyPoint( kp1.center, Scalar(fac*kp1.ellipse[0], fac*kp1.ellipse[1], fac*kp1.ellipse[2]) );
for( size_t i2 = 0; i2 < keypoints2t.size(); i2++ )
{
EllipticKeyPoint kp2 = keypoints2t[i2];
Point2f diff = kp2.center - kp1.center;
if( norm(diff) < maxDist )
{
EllipticKeyPoint keypoint2a = EllipticKeyPoint( kp2.center, Scalar(fac*kp2.ellipse[0], fac*kp2.ellipse[1], fac*kp2.ellipse[2]) );
//find the largest eigenvalue
float maxx = ceil(( keypoint1a.boundingBox.width > (diff.x+keypoint2a.boundingBox.width)) ?
keypoint1a.boundingBox.width : (diff.x+keypoint2a.boundingBox.width));
float minx = floor((-keypoint1a.boundingBox.width < (diff.x-keypoint2a.boundingBox.width)) ?
-keypoint1a.boundingBox.width : (diff.x-keypoint2a.boundingBox.width));
float maxy = ceil(( keypoint1a.boundingBox.height > (diff.y+keypoint2a.boundingBox.height)) ?
keypoint1a.boundingBox.height : (diff.y+keypoint2a.boundingBox.height));
float miny = floor((-keypoint1a.boundingBox.height < (diff.y-keypoint2a.boundingBox.height)) ?
-keypoint1a.boundingBox.height : (diff.y-keypoint2a.boundingBox.height));
float mina = (maxx-minx) < (maxy-miny) ? (maxx-minx) : (maxy-miny) ;
float dr = mina/50.f;
float bua = 0.f, bna = 0.f;
//compute the area
for( float rx1 = minx; rx1 <= maxx; rx1+=dr )
{
float rx2 = rx1-diff.x;
for( float ry1=miny; ry1<=maxy; ry1+=dr )
{
float ry2=ry1-diff.y;
//compute the distance from the ellipse center
float e1 = (float)(keypoint1a.ellipse[0]*rx1*rx1+2*keypoint1a.ellipse[1]*rx1*ry1+keypoint1a.ellipse[2]*ry1*ry1);
float e2 = (float)(keypoint2a.ellipse[0]*rx2*rx2+2*keypoint2a.ellipse[1]*rx2*ry2+keypoint2a.ellipse[2]*ry2*ry2);
//compute the area
if( e1<1 && e2<1 ) bna++;
if( e1<1 || e2<1 ) bua++;
}
}
if( bna > 0)
overlaps.ref(i1,i2) = bna/bua;
}
}
}
}
static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat& H1to2,
const vector<KeyPoint>& _keypoints1, const vector<KeyPoint>& _keypoints2,
float& repeatability, int& correspondencesCount,
SparseMat_<uchar>* thresholdedOverlapMask=0 )
{
vector<EllipticKeyPoint> keypoints1, keypoints2, keypoints1t, keypoints2t;
EllipticKeyPoint::convert( _keypoints1, keypoints1 );
EllipticKeyPoint::convert( _keypoints2, keypoints2 );
// calculate projections of key points
EllipticKeyPoint::calcProjection( keypoints1, H1to2, keypoints1t );
Mat H2to1; invert(H1to2, H2to1);
EllipticKeyPoint::calcProjection( keypoints2, H2to1, keypoints2t );
bool ifEvaluateDetectors = !thresholdedOverlapMask; // == commonPart
float overlapThreshold;
if( ifEvaluateDetectors )
{
overlapThreshold = 1.f - 0.4f;
// remove key points from outside of the common image part
Size sz1 = img1.size(), sz2 = img2.size();
filterEllipticKeyPointsByImageSize( keypoints1, sz1 );
filterEllipticKeyPointsByImageSize( keypoints1t, sz2 );
filterEllipticKeyPointsByImageSize( keypoints2, sz2 );
filterEllipticKeyPointsByImageSize( keypoints2t, sz1 );
}
else
{
overlapThreshold = 1.f - 0.5f;
}
int minCount = min( keypoints1.size(), keypoints2t.size() );
// calculate overlap errors
SparseMat_<float> overlaps;
overlap( keypoints1, keypoints2t, ifEvaluateDetectors, overlaps );
correspondencesCount = -1;
repeatability = -1.f;
const int* size = overlaps.size();
if( !size || overlaps.nzcount() == 0 )
return;
if( ifEvaluateDetectors )
{
// threshold the overlaps
for( int y = 0; y < size[0]; y++ )
{
for( int x = 0; x < size[1]; x++ )
{
if ( overlaps(y,x) < overlapThreshold )
overlaps.erase(y,x);
}
}
// regions one-to-one matching
correspondencesCount = 0;
while( overlaps.nzcount() > 0 )
{
double maxOverlap = 0;
int maxIdx[2];
minMaxLoc( overlaps, 0, &maxOverlap, 0, maxIdx );
for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
overlaps.erase(i1, maxIdx[1]);
for( size_t i2 = 0; i2 < keypoints2t.size(); i2++ )
overlaps.erase(maxIdx[0], i2);
correspondencesCount++;
}
repeatability = minCount ? (float)correspondencesCount/minCount : -1;
}
else
{
thresholdedOverlapMask->create( 2, size );
for( int y = 0; y < size[0]; y++ )
{
for( int x = 0; x < size[1]; x++ )
{
float val = overlaps(y,x);
if ( val >= overlapThreshold )
thresholdedOverlapMask->ref(y,x) = 1;
}
}
}
}
void cv::evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
vector<KeyPoint>* _keypoints1, vector<KeyPoint>* _keypoints2,
float& repeatability, int& correspCount,
const Ptr<FeatureDetector>& _fdetector )
{
Ptr<FeatureDetector> fdetector(_fdetector);
vector<KeyPoint> *keypoints1, *keypoints2, buf1, buf2;
keypoints1 = _keypoints1 != 0 ? _keypoints1 : &buf1;
keypoints2 = _keypoints2 != 0 ? _keypoints2 : &buf2;
if( (keypoints1->empty() || keypoints2->empty()) && fdetector.empty() )
CV_Error( CV_StsBadArg, "fdetector must be no empty when keypoints1 or keypoints2 is empty" );
if( keypoints1->empty() )
fdetector->detect( img1, *keypoints1 );
if( keypoints2->empty() )
fdetector->detect( img1, *keypoints2 );
calculateRepeatability( img1, img2, H1to2, *keypoints1, *keypoints2, repeatability, correspCount );
}
struct DMatchForEvaluation : public DMatch
{
uchar isCorrect;
DMatchForEvaluation( const DMatch &dm ) : DMatch( dm ) {}
};
static inline float recall( int correctMatchCount, int correspondenceCount )
{
return correspondenceCount ? (float)correctMatchCount / (float)correspondenceCount : -1;
}
static inline float precision( int correctMatchCount, int falseMatchCount )
{
return correctMatchCount + falseMatchCount ? (float)correctMatchCount / (float)(correctMatchCount + falseMatchCount) : -1;
}
void cv::computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
const vector<vector<uchar> >& correctMatches1to2Mask,
vector<Point2f>& recallPrecisionCurve )
{
CV_Assert( matches1to2.size() == correctMatches1to2Mask.size() );
vector<DMatchForEvaluation> allMatches;
int correspondenceCount = 0;
for( size_t i = 0; i < matches1to2.size(); i++ )
{
for( size_t j = 0; j < matches1to2[i].size(); j++ )
{
DMatchForEvaluation match = matches1to2[i][j];
match.isCorrect = correctMatches1to2Mask[i][j] ;
allMatches.push_back( match );
correspondenceCount += match.isCorrect != 0 ? 1 : 0;
}
}
std::sort( allMatches.begin(), allMatches.end() );
int correctMatchCount = 0, falseMatchCount = 0;
recallPrecisionCurve.resize( allMatches.size() );
for( size_t i = 0; i < allMatches.size(); i++ )
{
if( allMatches[i].isCorrect )
correctMatchCount++;
else
falseMatchCount++;
float r = recall( correctMatchCount, correspondenceCount );
float p = precision( correctMatchCount, falseMatchCount );
recallPrecisionCurve[i] = Point2f(1-p, r);
}
}
float cv::getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision )
{
float recall = -1;
if( l_precision >= 0 && l_precision <= 1 )
{
int bestIdx = -1;
float minDiff = FLT_MAX;
for( size_t i = 0; i < recallPrecisionCurve.size(); i++ )
{
float curDiff = std::fabs(l_precision - recallPrecisionCurve[i].x);
if( curDiff <= minDiff )
{
bestIdx = i;
minDiff = curDiff;
}
}
recall = recallPrecisionCurve[bestIdx].y;
}
return recall;
}
void cv::evaluateDescriptorMatch( const Mat& img1, const Mat& img2, const Mat& H1to2,
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
vector<vector<DMatch> >* _matches1to2, vector<vector<uchar> >* _correctMatches1to2Mask,
vector<Point2f>& recallPrecisionCurve,
const Ptr<GenericDescriptorMatch>& _dmatch )
{
Ptr<GenericDescriptorMatch> dmatch = _dmatch;
dmatch->clear();
vector<vector<DMatch> > *matches1to2, buf1;
vector<vector<uchar> > *correctMatches1to2Mask, buf2;
matches1to2 = _matches1to2 != 0 ? _matches1to2 : &buf1;
correctMatches1to2Mask = _correctMatches1to2Mask != 0 ? _correctMatches1to2Mask : &buf2;
2010-08-10 00:33:44 +08:00
if( keypoints1.empty() )
CV_Error( CV_StsBadArg, "keypoints1 must be no empty" );
if( matches1to2->empty() && dmatch.empty() )
CV_Error( CV_StsBadArg, "dmatch must be no empty when matches1to2 is empty" );
2010-08-10 00:33:44 +08:00
bool computeKeypoints2ByPrj = keypoints2.empty();
if( computeKeypoints2ByPrj )
{
assert(0);
// TODO: add computing keypoints2 from keypoints1 using H1to2
}
if( matches1to2->empty() || computeKeypoints2ByPrj )
{
2010-08-10 00:33:44 +08:00
dmatch->clear();
dmatch->add( img2, keypoints2 );
2010-08-10 00:33:44 +08:00
// TODO: use more sophisticated strategy to choose threshold
dmatch->match( img1, keypoints1, *matches1to2, std::numeric_limits<float>::max() );
}
float repeatability;
int correspCount;
SparseMat_<uchar> thresholdedOverlapMask; // thresholded allOverlapErrors
calculateRepeatability( img1, img2, H1to2,
keypoints1, keypoints2,
repeatability, correspCount,
&thresholdedOverlapMask );
correctMatches1to2Mask->resize(matches1to2->size());
int ddd = 0;
for( size_t i = 0; i < matches1to2->size(); i++ )
{
(*correctMatches1to2Mask)[i].resize((*matches1to2)[i].size());
for( size_t j = 0;j < (*matches1to2)[i].size(); j++ )
{
int indexQuery = (*matches1to2)[i][j].indexQuery;
int indexTrain = (*matches1to2)[i][j].indexTrain;
(*correctMatches1to2Mask)[i][j] = thresholdedOverlapMask( indexQuery, indexTrain );
ddd += thresholdedOverlapMask( indexQuery, indexTrain ) != 0 ? 1 : 0;
}
}
computeRecallPrecisionCurve( *matches1to2, *correctMatches1to2Mask, recallPrecisionCurve );
}