opencv/modules/dnn/test/test_common.impl.hpp

408 lines
14 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
#include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn.hpp"
#include "test_common.hpp"
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
{
switch (v) {
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return;
case DNN_BACKEND_OPENCV: *os << "OCV"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return;
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
default: /* do nothing */;
} // don't use "default:" to emit compiler warnings
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const cv::dnn::Target& v, std::ostream* os)
{
switch (v) {
case DNN_TARGET_CPU: *os << "CPU"; return;
case DNN_TARGET_OPENCL: *os << "OCL"; return;
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
case DNN_TARGET_FPGA: *os << "FPGA"; return;
} // don't use "default:" to emit compiler warnings
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
}
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
{
PrintTo(get<0>(v), os);
*os << "/";
PrintTo(get<1>(v), os);
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace
namespace opencv_test {
void normAssert(
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
{
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF);
}
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
{
EXPECT_EQ(m.type(), CV_32FC1);
EXPECT_EQ(m.dims, 2);
EXPECT_EQ(m.cols, 4);
std::vector<cv::Rect2d> boxes(m.rows);
for (int i = 0; i < m.rows; ++i)
{
CV_Assert(m.row(i).isContinuous());
const float* data = m.ptr<float>(i);
double l = data[0], t = data[1], r = data[2], b = data[3];
boxes[i] = cv::Rect2d(l, t, r - l, b - t);
}
return boxes;
}
void normAssertDetections(
const std::vector<int>& refClassIds,
const std::vector<float>& refScores,
const std::vector<cv::Rect2d>& refBoxes,
const std::vector<int>& testClassIds,
const std::vector<float>& testScores,
const std::vector<cv::Rect2d>& testBoxes,
const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
{
2020-07-04 03:14:05 +08:00
ASSERT_FALSE(testClassIds.empty()) << "No detections";
std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
2020-07-04 03:14:05 +08:00
std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0);
for (int i = 0; i < testBoxes.size(); ++i)
{
2020-07-04 03:14:05 +08:00
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl;
double testScore = testScores[i];
if (testScore < confThreshold)
continue;
int testClassId = testClassIds[i];
const cv::Rect2d& testBox = testBoxes[i];
bool matched = false;
double topIoU = 0;
for (int j = 0; j < refBoxes.size() && !matched; ++j)
{
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
std::abs(testScore - refScores[j]) < scores_diff)
{
double interArea = (testBox & refBoxes[j]).area();
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
topIoU = std::max(topIoU, iou);
2020-07-04 03:14:05 +08:00
refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou);
if (1.0 - iou < boxes_iou_diff)
{
matched = true;
matchedRefBoxes[j] = true;
}
}
}
if (!matched)
{
std::cout << cv::format("Unmatched prediction: class %d score %f box ",
testClassId, testScore) << testBox << std::endl;
std::cout << "Highest IoU: " << topIoU << std::endl;
}
EXPECT_TRUE(matched) << comment;
}
// Check unmatched reference detections.
for (int i = 0; i < refBoxes.size(); ++i)
{
if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
{
std::cout << cv::format("Unmatched reference: class %d score %f box ",
2020-07-04 03:14:05 +08:00
refClassIds[i], refScores[i]) << refBoxes[i]
<< " IoU diff: " << refBoxesIoUDiff[i]
<< std::endl;
EXPECT_LE(refScores[i], confThreshold) << comment;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections(
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
double boxes_iou_diff /*= 1e-4*/)
{
CV_Assert(ref.total() % 7 == 0);
CV_Assert(out.total() % 7 == 0);
ref = ref.reshape(1, ref.total() / 7);
out = out.reshape(1, out.total() / 7);
cv::Mat refClassIds, testClassIds;
ref.col(1).convertTo(refClassIds, CV_32SC1);
out.col(1).convertTo(testClassIds, CV_32SC1);
std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
}
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
{
const std::ios::openmode mode = std::ios::in | std::ios::binary;
std::ifstream ifs(filename.c_str(), mode);
ASSERT_TRUE(ifs.is_open());
content.clear();
ifs.seekg(0, std::ios::end);
const size_t sz = ifs.tellg();
content.resize(sz);
ifs.seekg(0, std::ios::beg);
ifs.read((char*)content.data(), sz);
ASSERT_FALSE(ifs.fail());
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
bool withInferenceEngine /*= true*/,
bool withHalide /*= false*/,
bool withCpuOCV /*= true*/,
bool withNgraph /*= true*/
)
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
#endif
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
if (withHalide)
{
available = getAvailableTargets(DNN_BACKEND_HALIDE);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
}
#ifdef HAVE_INF_ENGINE
if (withInferenceEngine)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
if (withNgraph)
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
#else
CV_UNUSED(withInferenceEngine);
#endif
{
available = getAvailableTargets(DNN_BACKEND_OPENCV);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (!withCpuOCV && *i == DNN_TARGET_CPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
}
}
if (targets.empty()) // validate at least CPU mode
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
return testing::ValuesIn(targets);
}
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE()
{
#ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType();
std::vector< tuple<Backend, Target> > targets;
std::vector< Target > available;
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i));
}
}
{
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD && !withVPU)
continue;
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i));
}
}
return testing::ValuesIn(targets);
#else
return testing::ValuesIn(std::vector< tuple<Backend, Target> >());
#endif
}
#ifdef HAVE_INF_ENGINE
static std::string getTestInferenceEngineVPUType()
{
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
return param_vpu_type;
}
static bool validateVPUType_()
{
std::string test_vpu_type = getTestInferenceEngineVPUType();
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
{
return false;
}
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
bool have_vpu_target = false;
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
{
if (*i == DNN_TARGET_MYRIAD)
{
have_vpu_target = true;
break;
}
}
if (test_vpu_type.empty())
{
if (have_vpu_target)
{
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
}
}
else
{
if (!have_vpu_target)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
exit(1);
}
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type != test_vpu_type)
{
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
exit(1);
}
}
if (have_vpu_target)
{
std::string dnn_vpu_type = getInferenceEngineVPUType();
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
}
return true;
}
bool validateVPUType()
{
static bool result = validateVPUType_();
return result;
}
#endif // HAVE_INF_ENGINE
void initDNNTests()
{
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_OPENCV_BACKEND,
CV_TEST_TAG_DNN_SKIP_CPU,
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
);
#if defined(HAVE_HALIDE)
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_HALIDE
);
#endif
#if defined(INF_ENGINE_RELEASE)
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_IE,
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
CV_TEST_TAG_DNN_SKIP_IE_2018R5,
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
CV_TEST_TAG_DNN_SKIP_IE_2019R1,
2019-07-25 14:57:49 +08:00
# if INF_ENGINE_RELEASE == 2019010100
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1,
# endif
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
CV_TEST_TAG_DNN_SKIP_IE_2019R2,
2019-10-04 15:29:27 +08:00
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
CV_TEST_TAG_DNN_SKIP_IE_2019R3,
#endif
#ifdef HAVE_DNN_NGRAPH
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH,
#endif
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER,
#endif
CV_TEST_TAG_DNN_SKIP_IE_CPU
);
registerGlobalSkipTag(
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
);
#endif
registerGlobalSkipTag(
CV_TEST_TAG_DNN_SKIP_ONNX_CONFORMANCE,
CV_TEST_TAG_DNN_SKIP_PARSER
);
}
} // namespace