opencv/modules/features2d/src/orb.cpp

812 lines
30 KiB
C++
Raw Normal View History

2011-05-21 06:25:53 +08:00
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */
#include "precomp.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace
{
/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image
* @param patch the 9 x 9 patch
* @param k the k in the Harris formula
* @param dX_offsets pre-computed offset to get all the interesting dX values
* @param dY_offsets pre-computed offset to get all the interesting dY values
* @return
*/
template<typename PatchType, typename SumType>
inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets,
const std::vector<int> &dY_offsets)
{
float a = 0, b = 0, c = 0;
static cv::Mat_<SumType> dX(9, 7), dY(7, 9);
SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data);
SumType * dX_data_end = dX_data + 9 * 7;
PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data);
int two_row_offset = 2 * patch.step1();
std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin();
// Compute the differences
for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset)
{
*dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2));
*dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset));
}
// Compute the Scharr result
dX_data = reinterpret_cast<SumType*> (dX.data);
dY_data = reinterpret_cast<SumType*> (dY.data);
for (size_t v = 0; v <= 6; v++, dY_data += 2)
{
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
{
// 1, 2 for Sobel, 3 and 10 for Scharr
float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)));
float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)));
2011-05-21 06:25:53 +08:00
a += Ix * Ix;
b += Iy * Iy;
c += Ix * Iy;
}
}
return ((a * b - c * c) - (k * ((a + b) * (a + b))));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class used to compute the cornerness of specific points in an image */
struct HarrisResponse
{
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
explicit HarrisResponse(const cv::Mat& image, double k = 0.04);
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void operator()(std::vector<cv::KeyPoint>& kpts) const;
private:
/** The cached image to analyze */
cv::Mat image_;
/** The k factor in the Harris corner detection */
double k_;
/** The offset in X to compute the differences */
std::vector<int> dX_offsets_;
/** The offset in Y to compute the differences */
std::vector<int> dY_offsets_;
};
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
image_(image), k_(k)
{
// Compute the offsets for the Harris corners once and for all
dX_offsets_.resize(7 * 9);
dY_offsets_.resize(7 * 9);
std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin();
unsigned int image_step = image.step1();
for (size_t y = 0; y <= 6 * image_step; y += image_step)
{
int dX_offset = y + 2, dY_offset = y + 2 * image_step;
for (size_t x = 0; x <= 6; ++x)
{
*(dX_offsets++) = dX_offset++;
*(dY_offsets++) = dY_offset++;
}
for (size_t x = 7; x <= 8; ++x)
*(dY_offsets++) = dY_offset++;
}
for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step)
{
int dX_offset = y + 2;
for (size_t x = 0; x <= 6; ++x)
*(dX_offsets++) = dX_offset++;
}
}
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{
// Those parameters are used to match the OpenCV computation of Harris corners
float scale = (1 << 2) * 7.0f * 255.0f;
scale = 1.0f / scale;
2011-05-21 06:25:53 +08:00
float scale_sq_sq = scale * scale * scale * scale;
// define it to 1 if you want to compare to what OpenCV computes
#define HARRIS_TEST 0
#if HARRIS_TEST
cv::Mat_<float> dst;
cv::cornerHarris(image_, dst, 7, 3, k_);
#endif
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
{
cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9));
2011-05-21 06:25:53 +08:00
// Compute the response
kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
2011-05-21 06:25:53 +08:00
#if HARRIS_TEST
cv::Mat_<float> Ix(9, 9), Iy(9, 9);
cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale);
cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale);
float a = 0, b = 0, c = 0;
for (unsigned int y = 1; y <= 7; ++y)
{
for (unsigned int x = 1; x <= 7; ++x)
{
a += Ix(y, x) * Ix(y, x);
b += Iy(y, x) * Iy(y, x);
c += Ix(y, x) * Iy(y, x);
}
}
//[ a c ]
//[ c b ]
float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b)));
std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl;
#endif
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs)
{
return lhs.response > rhs.response;
}
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
* @param integral_image
* @param x1
* @param y1
* @param x2
* @param y2
* @return
*/
template<typename SumType>
inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset)
{
return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3));
}
template<typename SumType>
void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt,
const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets)
{
SumType m_01 = 0, m_10 = 0;
// Go line by line in the circular patch
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
vertical_offsets.begin();
const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x)));
2011-05-21 06:25:53 +08:00
for (int uv = 1; uv <= half_k; ++uv)
{
// Do the horizontal lines
m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr,
horizontal_iterator + 4));
horizontal_iterator += 8;
// Do the vertical lines
m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator)
+ integral_rectangle(val_ptr, vertical_iterator + 4));
vertical_iterator += 8;
}
float x = (float)m_10;
float y = (float)m_01;
2011-05-21 06:25:53 +08:00
kpt.angle = cv::fastAtan2(y, x);
}
template<typename PatchType, typename SumType>
void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max)
{
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))), *val_center_ptr_minus;
2011-05-21 06:25:53 +08:00
// Treat the center line differently, v=0
{
const PatchType* val = val_center_ptr_plus - half_k;
for (int u = -half_k; u <= half_k; ++u, ++val)
m_10 += u * (SumType)(*val);
}
// Go line by line in the circular patch
val_center_ptr_minus = val_center_ptr_plus - image.step1();
val_center_ptr_plus += image.step1();
for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1())
{
// The beginning of the two lines
const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v];
const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v];
// Proceed over the two lines
SumType v_sum = 0;
for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus)
{
SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus;
v_sum += (val_plus - val_minus);
m_10 += u * (val_plus + val_minus);
}
m_01 += v * v_sum;
}
float x = (float)m_10;// / float(m_00);// / m_00;
float y = (float)m_01;// / float(m_00);// / m_00;
2011-05-21 06:25:53 +08:00
kpt.angle = cv::fastAtan2(y, x);
}
inline int smoothedSum(const int *center, const int* int_diff)
{
// Points in order 01
// 32
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
}
inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m)
2011-05-21 06:25:53 +08:00
{
static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
2011-05-21 06:25:53 +08:00
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
}
}
namespace cv
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class ORB::OrbPatterns
{
public:
// We divide in 30 wedges
static const int kNumAngles = 30;
/** Constructor
* Add +1 to the step as this is the step of the integral image, not image
* @param sz
* @param normalized_step
* @return
*/
OrbPatterns(int sz, unsigned int normalized_step_size) :
normalized_step_(normalized_step_size)
{
relative_patterns_.resize(kNumAngles);
for (int i = 0; i < kNumAngles; i++)
generateRelativePattern(i, sz, relative_patterns_[i]);
}
/** Generate the patterns and relative patterns
* @param sz
* @param normalized_step
* @return
*/
static std::vector<cv::Mat> generateRotatedPatterns()
{
std::vector<cv::Mat> rotated_patterns(kNumAngles);
cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_);
for (int i = 0; i < kNumAngles; i++)
{
const cv::Mat rotation_matrix = getRotationMat(i);
transform(pattern, rotated_patterns[i], rotation_matrix);
// Make sure the pattern is now one channel, and 512*2
rotated_patterns[i] = rotated_patterns[i].reshape(1, 512);
}
return rotated_patterns;
}
/** Compute the brief pattern for a given keypoint
* @param angle the orientation of the keypoint
* @param sum the integral image
* @param pt the keypoint
* @param descriptor the descriptor
*/
void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const
{
float angle = kpt.angle;
// Compute the pointer to the center of the feature
int img_y = (int)(kpt.pt.y + 0.5);
int img_x = (int)(kpt.pt.x + 0.5);
const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x;
// Compute the pointer to the absolute pattern row
const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0);
for (int i = 0, j = 0; i < 32; ++i, j += 64)
{
desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6)
| smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4)
| smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2)
| smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0);
}
}
/** Compare the currently used normalized step of the integral image to a new one
* @param integral_image the integral we want to use the pattern on
* @return true if the two steps are equal
*/
bool compareNormalizedStep(const cv::Mat & integral_image) const
{
return (normalized_step_ == integral_image.step1());
}
/** Compare the currently used normalized step of the integral image to a new one
* @param step_size the normalized step size to compare to
* @return true if the two steps are equal
*/
bool compareNormalizedStep(unsigned int normalized_step_size) const
{
return (normalized_step_ == normalized_step_size);
}
private:
static inline int angle2Wedge(float angle)
{
static float scale = float(kNumAngles) / 360.0f;
return std::min(int(std::floor(angle * scale)), kNumAngles - 1);
2011-05-21 06:25:53 +08:00
}
void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern)
2011-05-21 06:25:53 +08:00
{
// Create the relative pattern
relative_pattern.create(512, 4, CV_32SC1);
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
// Get the original rotated pattern
const int * pattern_data;
//switch (sz)
2011-05-21 06:25:53 +08:00
{
//default:
2011-05-21 06:25:53 +08:00
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
//break;
2011-05-21 06:25:53 +08:00
}
int half_kernel = ORB::kKernelWidth / 2;
for (unsigned int i = 0; i < 512; ++i)
{
int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1));
// Points in order 01
// 32
// +1 is added for certain coordinates for the integral image
*(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_;
*(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_;
}
}
static cv::Mat getRotationMat(int angle_idx)
{
float a = float(float(angle_idx) / kNumAngles * CV_PI * 2);
2011-05-21 06:25:53 +08:00
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
}
/** Contains the relative patterns (rotated ones in relative coordinates)
*/
std::vector<cv::Mat_<int> > relative_patterns_;
/** The step of the integral image
*/
size_t normalized_step_;
/** Pattern loaded from the include files
*/
static std::vector<cv::Mat> rotated_patterns_;
static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2)
};
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
//this is the definition for BIT_PATTERN
#include "orb_pattern.hpp"
2011-05-21 06:25:53 +08:00
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Constructor
* @param detector_params parameters to use
*/
ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_desired_features_per_scale = cvRound(n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1)));
2011-05-21 06:25:53 +08:00
n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{
n_desired_features_per_scale = cvRound(n_desired_features_per_scale / std::pow(params_.scale_factor_, 2));
2011-05-21 06:25:53 +08:00
n_features_per_level_[level] = n_desired_features_per_scale;
}
// pre-compute the end of a row in a circular patch
half_patch_size_ = params_.patch_size_ / 2;
u_max_.resize(half_patch_size_ + 1);
for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v)
u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)));
2011-05-21 06:25:53 +08:00
// Make sure we are symmetric
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v)
2011-05-21 06:25:53 +08:00
{
while (u_max_[v_0] == u_max_[v_0 + 1])
++v_0;
u_max_[v] = v_0;
++v_0;
}
}
/** returns the descriptor size in bytes */
int ORB::descriptorSize() const {
return kBytes;
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints)
{
cv::Mat empty_descriptors;
this->operator ()(image, mask, keypoints, empty_descriptors, true, false);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints,
cv::Mat & descriptors, bool useProvidedKeypoints)
{
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out,
cv::Mat & descriptors, bool do_keypoints, bool do_descriptors)
{
if ((!do_keypoints) && (!do_descriptors))
return;
if (do_descriptors)
descriptors.release();
// Pre-compute the scale pyramids
std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
if (level != params_.first_level_)
{
float scale = 1 / std::pow(params_.scale_factor_, float(level - params_.first_level_));
2011-05-21 06:25:53 +08:00
cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
if (!mask.empty())
cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
}
else
{
image_pyramid[level] = image;
mask_pyramid[level] = mask;
}
}
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
std::vector<std::vector<cv::KeyPoint> > all_keypoints;
if (do_keypoints)
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
else
{
// Cluster the input keypoints
all_keypoints.resize(params_.n_levels_);
2011-05-21 06:25:53 +08:00
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint
!= keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);
}
keypoints_in_out.clear();
2011-05-21 06:25:53 +08:00
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
cv::Mat & working_mat = image_pyramid[level];
// Compute the integral image
cv::Mat integral_image;
if (do_descriptors)
// if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the
// integral image
computeIntegralImage(working_mat, level, integral_image);
// Compute the features
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
if (do_keypoints)
computeOrientation(working_mat, integral_image, level, keypoints);
// Compute the descriptors
cv::Mat desc;
if (do_descriptors)
computeDescriptors(working_mat, integral_image, level, keypoints, desc);
// Copy to the output data
if (level != params_.first_level_)
2011-05-21 06:25:53 +08:00
{
float scale = std::pow(params_.scale_factor_, float(level - params_.first_level_));
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->pt *= scale;
}
// And add the keypoints to the output
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end());
2011-05-21 06:25:53 +08:00
if (do_descriptors)
{
if (descriptors.empty())
desc.copyTo(descriptors);
else
descriptors.push_back(desc);
2011-05-21 06:25:53 +08:00
}
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const
{
all_keypoints_out.resize(params_.n_levels_);
std::vector<cv::KeyPoint> all_keypoints;
all_keypoints.reserve(2 * n_features_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
all_keypoints_out[level].reserve(n_features_per_level_[level]);
std::vector<cv::KeyPoint> keypoints;
// Detect FAST features, 20 is a good threshold
cv::FastFeatureDetector fd(20, true);
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]);
// Remove keypoints very close to the border
// half_patch_size_ for orientation, 4 for Harris
unsigned int border_safety = std::max(half_patch_size_, 4);
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety);
// Keep more points than necessary as FAST does not give amazing corners
if (keypoints.size() > 2 * n_features_per_level_[level])
{
std::nth_element(keypoints.begin(), keypoints.begin() + 2 * n_features_per_level_[level], keypoints.end(),
keypointResponseGreater);
keypoints.resize(2 * n_features_per_level_[level]);
}
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponse h(image_pyramid[level]);
h(keypoints);
// Set the level of the coordinates
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->octave = level;
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end());
}
// Only keep what we need
if (all_keypoints.size() > n_features_)
{
std::nth_element(all_keypoints.begin(), all_keypoints.begin() + n_features_, all_keypoints.end(),
keypointResponseGreater);
all_keypoints.resize(n_features_);
}
// Cluster the keypoints
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
all_keypoints_out[keypoint->octave].push_back(*keypoint);
}
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale,
std::vector<cv::KeyPoint>& keypoints) const
{
// If using the integral image, some offsets will be pre-computed for speed
std::vector<int> horizontal_offsets(8 * half_patch_size_), vertical_offsets(8 * half_patch_size_);
// Process each keypoint
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
{
//get a patch at the keypoint
if (integral_image.empty())
{
switch (image.depth())
{
case CV_8U:
IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32S:
IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32F:
IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_64F:
IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_);
break;
}
}
else
{
// use the integral image if you can
switch (integral_image.depth())
{
case CV_32S:
IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale],
orientation_vertical_offsets_[scale]);
break;
case CV_32F:
IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
case CV_64F:
IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
}
}
}
}
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image)
{
integral(image, integral_image, CV_32S);
integral_image_steps_.resize(params_.n_levels_, 0);
if (integral_image_steps_[level] == integral_image.step1())
return;
// If the integral image dimensions have changed, recompute everything
int integral_image_step = integral_image.step1();
// Cache the step sizes
integral_image_steps_[level] = integral_image_step;
// Cache the offsets for the orientation
orientation_horizontal_offsets_.resize(params_.n_levels_);
orientation_vertical_offsets_.resize(params_.n_levels_);
orientation_horizontal_offsets_[level].resize(8 * half_patch_size_);
orientation_vertical_offsets_[level].resize(8 * half_patch_size_);
for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v)
{
// Compute the offsets to use if using the integral image
for (int signed_v = -v; signed_v <= v; signed_v += 2 * v)
{
// the offsets are computed so that we can compute the integral image
// elem at 0 - eleme at 1 - elem at 2 + elem at 3
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v;
++offset_index;
}
}
// Remove the previous version if dimensions are different
patterns_.resize(params_.n_levels_, 0);
if ((patterns_[level]) && (patterns_[level]->compareNormalizedStep(integral_image)))
{
delete patterns_[level];
patterns_[level] = 0;
}
if (!patterns_[level])
patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image.step1());
}
/** Compute the ORB decriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const
{
//convert to grayscale if more than one color
cv::Mat gray_image = image;
if (image.type() != CV_8UC1)
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
int border_safety = params_.patch_size_ + kKernelWidth / 2 + 2;
//Remove keypoints very close to the border
cv::KeyPointsFilter::runByImageBorder(keypoints, image.size(), border_safety);
// Get the patterns to apply
OrbPatterns* patterns = patterns_[level];
2011-05-21 06:25:53 +08:00
//create the descriptor mat, keypoints.size() rows, BYTES cols
descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
// look up the test pattern
patterns->compute(keypoints[i], integral_image, descriptors.ptr(i));
}
}