opencv/modules/optim/src/lpsolver.cpp

330 lines
9.3 KiB
C++
Raw Normal View History

#include "opencv2/ts.hpp"
#include "precomp.hpp"
#include <climits>
#include <algorithm>
#include <cstdarg>
namespace cv{namespace optim{
using std::vector;
const void dprintf(const char* format,...){
#ifdef ALEX_DEBUG
va_list args;
va_start (args,format);
vprintf(format,args);
va_end(args);
#endif
}
void const print_matrix(const Mat& X){
#ifdef ALEX_DEBUG
dprintf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
for(int i=0;i<X.rows;i++){
dprintf("\t[");
for(int j=0;j<X.cols;j++){
dprintf("%g, ",X.at<double>(i,j));
}
dprintf("]\n");
}
#endif
}
void const print_simplex_state(const Mat& c,const Mat&b,double v,const vector<int>& N,const vector<int>& B){
#ifdef ALEX_DEBUG
dprintf("\tprint simplex state\n");
dprintf("v=%g\n",v);
dprintf("here c goes\n");
print_matrix(c);
dprintf("non-basic: ");
for (std::vector<int>::const_iterator it = N.begin() ; it != N.end(); ++it){
dprintf("%d, ",*it);
}
dprintf("\n");
dprintf("here b goes\n");
print_matrix(b);
dprintf("basic: ");
for (std::vector<int>::const_iterator it = B.begin() ; it != B.end(); ++it){
dprintf("%d, ",*it);
}
dprintf("\n");
#endif
}
/**Due to technical considerations, the format of input b and c is somewhat special:
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
it also initializes N and B and does not make any assumptions about their init values
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
*/
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index);
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
*/
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
const void swap_columns(Mat_<double>& A,int col1,int col2);
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
dprintf("call to solveLP\n");
//sanity check (size, type, no. of channels)
CV_Assert(Func.type()==CV_64FC1);
CV_Assert(Constr.type()==CV_64FC1);
CV_Assert(Func.rows==1);
CV_Assert(Constr.cols-Func.cols==1);
//copy arguments for we will shall modify them
Mat_<double> bigC=Mat_<double>(1,Func.cols+1),
bigB=Mat_<double>(Constr.rows,Constr.cols+1);
Func.copyTo(bigC.colRange(1,bigC.cols));
Constr.copyTo(bigB.colRange(1,bigB.cols));
double v=0;
vector<int> N,B;
if(initialize_simplex(bigC,bigB,v,N,B)==SOLVELP_UNFEASIBLE){
return SOLVELP_UNFEASIBLE;
}
Mat_<double> c=bigC.colRange(1,bigC.cols),
b=bigB.colRange(1,bigB.cols);
int res=0;
if((res=inner_simplex(c,b,v,N,B))==SOLVELP_UNBOUNDED){
return SOLVELP_UNBOUNDED;
}
//return the optimal solution
const int z_size[]={1,c.cols};
z.create(2,z_size,CV_64FC1);
MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){
std::vector<int>::iterator pos=B.begin();
if((pos=std::find(B.begin(),B.end(),i))==B.end()){
*it=0;
}else{
*it=b.at<double>(pos-B.begin(),b.cols-1);
}
}
return res;
}
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
N.resize(c.cols);
N[0]=0;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
*it=it[-1]+1;
}
B.resize(b.rows);
B[0]=N.size();
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
*it=it[-1]+1;
}
v=0;
int k=0;
{
double min=DBL_MAX;
for(int i=0;i<b.rows;i++){
if(b(i,b.cols-1)<min){
min=b(i,b.cols-1);
k=i;
}
}
}
if(b(k,b.cols-1)>=0){
N.erase(N.begin());
return 0;
}
Mat_<double> old_c=c.clone();
c=0;
c(0,0)=-1;
for(int i=0;i<b.rows;i++){
b(i,0)=-1;
}
print_simplex_state(c,b,v,N,B);
dprintf("\tWE MAKE PIVOT\n");
pivot(c,b,v,N,B,k,0);
print_simplex_state(c,b,v,N,B);
inner_simplex(c,b,v,N,B);
dprintf("\tAFTER INNER_SIMPLEX\n");
print_simplex_state(c,b,v,N,B);
vector<int>::iterator it=std::find(B.begin(),B.end(),0);
if(it!=B.end()){
int it_offset=it-B.begin();
if(b(it_offset,b.cols-1)>0){
return SOLVELP_UNFEASIBLE;
}
pivot(c,b,v,N,B,it_offset,0);
}
it=std::find(N.begin(),N.end(),0);
int it_offset=it-N.begin();
std::iter_swap(it,N.begin());
swap_columns(c,it_offset,0);
swap_columns(b,it_offset,0);
dprintf("after swaps\n");
print_simplex_state(c,b,v,N,B);
//start from 1, because we ignore x_0
c=0;
v=0;
for(int i=1;i<old_c.cols;i++){
if((it=std::find(N.begin(),N.end(),i))!=N.end()){
dprintf("i=%d from nonbasic\n",i);
fflush(stdout);
int it_offset=it-N.begin();
c(0,it_offset)+=old_c(0,i);
print_matrix(c);
}else{
//cv::Mat_
dprintf("i=%d from basic\n",i);
fflush(stdout);
int it_offset=std::find(B.begin(),B.end(),i)-B.begin();
c-=old_c(0,i)*b.row(it_offset).colRange(0,b.cols-1);
v+=old_c(0,i)*b(it_offset,b.cols-1);
print_matrix(c);
}
}
dprintf("after restore\n");
print_simplex_state(c,b,v,N,B);
N.erase(N.begin());
return 0;
}
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
int count=0;
while(1){
dprintf("iteration #%d\n",count++);
static MatIterator_<double> pos_ptr;
int e=-1,pos_ctr=0,min_var=INT_MAX;
bool all_nonzero=true;
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
if(*pos_ptr==0){
all_nonzero=false;
}
if(*pos_ptr>0){
if(N[pos_ctr]<min_var){
e=pos_ctr;
min_var=N[pos_ctr];
}
}
}
if(e==-1){
dprintf("hello from e==-1\n");
print_matrix(c);
if(all_nonzero==true){
return SOLVELP_SINGLE;
}else{
return SOLVELP_MULTI;
}
}
int l=-1;
min_var=INT_MAX;
double min=DBL_MAX;
int row_it=0;
double ite=0;
MatIterator_<double> min_row_ptr=b.begin();
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
double myite=0;
//check constraints, select the tightest one, reinforcing Bland's rule
if((myite=it[e])>0){
double val=it[b.cols-1]/myite;
if(val<min || (val==min && B[row_it]<min_var)){
min_var=B[row_it];
min_row_ptr=it;
ite=myite;
min=val;
l=row_it;
}
}
}
if(l==-1){
return SOLVELP_UNBOUNDED;
}
dprintf("the tightest constraint is in row %d with %g\n",l,min);
pivot(c,b,v,N,B,l,e);
dprintf("objective, v=%g\n",v);
print_matrix(c);
dprintf("constraints\n");
print_matrix(b);
dprintf("non-basic: ");
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){
dprintf("%d, ",*it);
}
dprintf("\nbasic: ");
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){
dprintf("%d, ",*it);
}
dprintf("\n");
}
}
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){
double coef=b(leaving_index,entering_index);
for(int i=0;i<b.cols;i++){
if(i==entering_index){
b(leaving_index,i)=1/coef;
}else{
b(leaving_index,i)/=coef;
}
}
for(int i=0;i<b.rows;i++){
if(i!=leaving_index){
double coef=b(i,entering_index);
for(int j=0;j<b.cols;j++){
if(j==entering_index){
b(i,j)=-coef*b(leaving_index,j);
}else{
b(i,j)-=(coef*b(leaving_index,j));
}
}
}
}
//objective function
coef=c(0,entering_index);
for(int i=0;i<(b.cols-1);i++){
if(i==entering_index){
c(0,i)=-coef*b(leaving_index,i);
}else{
c(0,i)-=coef*b(leaving_index,i);
}
}
dprintf("v was %g\n",v);
v+=coef*b(leaving_index,b.cols-1);
int tmp=N[entering_index];
N[entering_index]=B[leaving_index];
B[leaving_index]=tmp;
}
const inline void swap_columns(Mat_<double>& A,int col1,int col2){
for(int i=0;i<A.rows;i++){
double tmp=A(i,col1);
A(i,col1)=A(i,col2);
A(i,col2)=tmp;
}
}
}}