opencv/modules/python/src2/cv2_convert.cpp

1178 lines
31 KiB
C++
Raw Normal View History

// must be defined before importing numpy headers
// https://numpy.org/doc/1.17/reference/c-api.array.html#importing-the-api
#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL opencv_ARRAY_API
#include "cv2_convert.hpp"
#include "cv2_numpy.hpp"
#include "cv2_util.hpp"
#include "opencv2/core/utils/logger.hpp"
PyTypeObject* pyopencv_Mat_TypePtr = nullptr;
//======================================================================================================================
using namespace cv;
template <typename T>
static std::string pycv_dumpArray(const T* arr, int n)
{
std::ostringstream out;
out << "[";
for (int i = 0; i < n; ++i)
out << " " << arr[i];
out << " ]";
return out.str();
}
static inline std::string getArrayTypeName(PyArrayObject* arr)
{
PyArray_Descr* dtype = PyArray_DESCR(arr);
PySafeObject dtype_str(PyObject_Str(reinterpret_cast<PyObject*>(dtype)));
if (!dtype_str)
{
// Fallback to typenum value
return cv::format("%d", PyArray_TYPE(arr));
}
std::string type_name;
if (!getUnicodeString(dtype_str, type_name))
{
// Failed to get string from bytes object - clear set TypeError and
// fallback to typenum value
PyErr_Clear();
return cv::format("%d", PyArray_TYPE(arr));
}
return type_name;
}
//======================================================================================================================
// --- Mat
// special case, when the converter needs full ArgInfo structure
template<>
bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
{
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( PyInt_Check(o) )
{
double v[] = {static_cast<double>(PyInt_AsLong((PyObject*)o)), 0., 0., 0.};
if ( info.arithm_op_src )
{
// Normally cv.XXX(x) means cv.XXX( (x, 0., 0., 0.) );
// However cv.add(mat,x) means cv::add(mat, (x,x,x,x) ).
v[1] = v[0];
v[2] = v[0];
v[3] = v[0];
}
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
if ( info.arithm_op_src )
{
// Normally cv.XXX(x) means cv.XXX( (x, 0., 0., 0.) );
// However cv.add(mat,x) means cv::add(mat, (x,x,x,x) ).
v[1] = v[0];
v[2] = v[0];
v[3] = v[0];
}
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
// see https://github.com/opencv/opencv/issues/24057
const int sz = (int)PyTuple_Size((PyObject*)o);
const int sz2 = info.arithm_op_src ? std::max(4, sz) : sz; // Scalar has 4 elements.
m = Mat::zeros(sz2, 1, CV_64F);
for( int i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GetItem(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical tuple", info.name);
m.release();
return false;
}
}
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}
PyArrayObject* oarr = (PyArrayObject*) o;
if (info.outputarg && !PyArray_ISWRITEABLE(oarr))
{
failmsg("%s marked as output argument, but provided NumPy array "
"marked as readonly", info.name);
return false;
}
bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_HALF ? CV_16F :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
const std::string dtype_name = getArrayTypeName(oarr);
failmsg("%s data type = %s is not supported", info.name,
dtype_name.c_str());
return false;
}
}
#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif
int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
CV_LOG_DEBUG(NULL, "Incoming ndarray '" << info.name << "': ndims=" << ndims << " _sizes=" << pycv_dumpArray(_sizes, ndims) << " _strides=" << pycv_dumpArray(_strides, ndims));
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
if (pyopencv_Mat_TypePtr && PyObject_TypeCheck(o, pyopencv_Mat_TypePtr))
{
bool wrapChannels = false;
PyObject* pyobj_wrap_channels = PyObject_GetAttrString(o, "wrap_channels");
if (pyobj_wrap_channels)
{
if (!pyopencv_to_safe(pyobj_wrap_channels, wrapChannels, ArgInfo("cv.Mat.wrap_channels", 0)))
{
// TODO extra message
Py_DECREF(pyobj_wrap_channels);
return false;
}
Py_DECREF(pyobj_wrap_channels);
}
ismultichannel = wrapChannels && ndims >= 1;
}
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
// the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set
if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}
if (ismultichannel)
{
int channels = ndims >= 1 ? (int)_sizes[ndims - 1] : 1;
if (channels > CV_CN_MAX)
{
failmsg("%s unable to wrap channels, too high (%d > CV_CN_MAX=%d)", info.name, (int)channels, (int)CV_CN_MAX);
return false;
}
ndims--;
type |= CV_MAKETYPE(0, channels);
if (ndims >= 1 && _strides[ndims - 1] != (npy_intp)elemsize*_sizes[ndims])
needcopy = true;
elemsize = CV_ELEM_SIZE(type);
}
if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat", info.name);
return false;
}
if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}
_strides = PyArray_STRIDES(oarr);
}
int size[CV_MAX_DIM+1] = {};
size_t step[CV_MAX_DIM+1] = {};
// Normalize strides in case NPY_RELAXED_STRIDES is set
size_t default_step = elemsize;
for ( int i = ndims - 1; i >= 0; --i )
{
size[i] = (int)_sizes[i];
if ( size[i] > 1 )
{
step[i] = (size_t)_strides[i];
default_step = step[i] * size[i];
}
else
{
step[i] = default_step;
default_step *= size[i];
}
}
// see https://github.com/opencv/opencv/issues/24057
if ( ( info.arithm_op_src ) && ( ndims == 1 ) && ( size[0] <= 4 ) )
{
const int sz = size[0]; // Real Data Length(1, 2, 3 or 4)
const int sz2 = 4; // Scalar has 4 elements.
m = Mat::zeros(sz2, 1, CV_64F);
const char *base_ptr = PyArray_BYTES(oarr);
for(int i = 0; i < sz; i++ )
{
PyObject* oi = PyArray_GETITEM(oarr, base_ptr + step[0] * i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s has some non-numerical elements", info.name);
m.release();
return false;
}
}
return true;
}
// handle degenerate case
// FIXIT: Don't force 1D for Scalars
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
#if 1
CV_LOG_DEBUG(NULL, "Construct Mat: ndims=" << ndims << " size=" << pycv_dumpArray(size, ndims) << " step=" << pycv_dumpArray(step, ndims) << " type=" << cv::typeToString(type));
#endif
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();
if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;
return true;
}
template<>
PyObject* pyopencv_from(const cv::Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
cv::Mat temp, *p = (cv::Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}
// --- bool
template<>
bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj) || PyArray_IsIntegerScalar(obj))
{
npy_bool npy_value = NPY_FALSE;
const int ret_code = PyArray_BoolConverter(obj, &npy_value);
if (ret_code >= 0)
{
value = (npy_value == NPY_TRUE);
return true;
}
}
failmsg("Argument '%s' is not convertable to bool", info.name);
return false;
}
template<>
PyObject* pyopencv_from(const bool& value)
{
return PyBool_FromLong(value);
}
// --- ptr
template<>
bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info)
{
CV_UNUSED(info);
if (!obj || obj == Py_None)
return true;
if (!PyLong_Check(obj))
return false;
ptr = PyLong_AsVoidPtr(obj);
return ptr != NULL && !PyErr_Occurred();
}
PyObject* pyopencv_from(void*& ptr)
{
return PyLong_FromVoidPtr(ptr);
}
// -- Scalar
template<>
bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo& info)
{
if(!o || o == Py_None)
return true;
if (PySequence_Check(o)) {
if (4 < PySequence_Size(o))
{
failmsg("Scalar value for argument '%s' is longer than 4", info.name);
return false;
}
for (Py_ssize_t i = 0; i < PySequence_Size(o); i++) {
SafeSeqItem item_wrap(o, i);
PyObject *item = item_wrap.item;
if (PyFloat_Check(item) || PyInt_Check(item)) {
s[(int)i] = PyFloat_AsDouble(item);
} else {
failmsg("Scalar value for argument '%s' is not numeric", info.name);
return false;
}
}
} else {
if (PyFloat_Check(o) || PyInt_Check(o)) {
s = PyFloat_AsDouble(o);
} else {
failmsg("Scalar value for argument '%s' is not numeric", info.name);
return false;
}
}
return true;
}
template<>
PyObject* pyopencv_from(const Scalar& src)
{
return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
}
// --- size_t
template<>
bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer type, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
if (PyLong_Check(obj))
{
#if defined(CV_PYTHON_3)
value = PyLong_AsSize_t(obj);
#else
#if ULONG_MAX == SIZE_MAX
value = PyLong_AsUnsignedLong(obj);
#else
value = PyLong_AsUnsignedLongLong(obj);
#endif
#endif
}
#if !defined(CV_PYTHON_3)
// Python 2.x has PyIntObject which is not a subtype of PyLongObject
// Overflow check here is unnecessary because object will be converted to long on the
// interpreter side
else if (PyInt_Check(obj))
{
const long res = PyInt_AsLong(obj);
if (res < 0) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
#if ULONG_MAX == SIZE_MAX
value = PyInt_AsUnsignedLongMask(obj);
#else
value = PyInt_AsUnsignedLongLongMask(obj);
#endif
}
#endif
else
{
const bool isParsed = parseNumpyScalar<size_t>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
}
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const size_t& value)
{
return PyLong_FromSize_t(value);
}
// --- int
template<>
bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
value = PyArray_PyIntAsInt(obj);
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !CV_HAS_CONVERSION_ERROR(value);
}
template<>
PyObject* pyopencv_from(const int& value)
{
return PyInt_FromLong(value);
}
// --- int64
template<>
bool pyopencv_to(PyObject* obj, int64& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
value = PyLong_AsLongLong(obj);
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !CV_HAS_CONVERSION_ERROR(value);
}
template<>
PyObject* pyopencv_from(const int64& value)
{
return PyLong_FromLongLong(value);
}
// --- uchar
template<>
bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
int ivalue = (int)PyInt_AsLong(obj);
value = cv::saturate_cast<uchar>(ivalue);
return ivalue != -1 || !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const uchar& value)
{
return PyInt_FromLong(value);
}
// --- char
template<>
bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be an integer, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
value = saturate_cast<char>(PyArray_PyIntAsInt(obj));
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !CV_HAS_CONVERSION_ERROR(value);
}
// --- double
template<>
bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be double, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
value = PyLong_AsDouble(obj);
}
else
{
value = PyFloat_AsDouble(obj);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<double>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'double'", info.name);
return false;
}
}
else
{
failmsg("Argument '%s' can not be treated as a double", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const double& value)
{
return PyFloat_FromDouble(value);
}
// --- float
template<>
bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (isBool(obj))
{
failmsg("Argument '%s' must be float, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
double res = PyLong_AsDouble(obj);
value = static_cast<float>(res);
}
else
{
double res = PyFloat_AsDouble(obj);
value = static_cast<float>(res);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<float>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'float'", info.name);
return false;
}
}
else
{
failmsg("Argument '%s' can't be treated as a float", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const float& value)
{
return PyFloat_FromDouble(value);
}
// --- string
template<>
bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info)
{
if(!obj || obj == Py_None)
{
return true;
}
std::string str;
if (getUnicodeString(obj, str))
{
value = str;
return true;
}
else
{
// If error hasn't been already set by Python conversion functions
if (!PyErr_Occurred())
{
// Direct access to underlying slots of PyObjectType is not allowed
// when limited API is enabled
#ifdef Py_LIMITED_API
failmsg("Can't convert object to 'str' for '%s'", info.name);
#else
failmsg("Can't convert object of type '%s' to 'str' for '%s'",
obj->ob_type->tp_name, info.name);
#endif
}
}
return false;
}
template<>
PyObject* pyopencv_from(const String& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#if CV_VERSION_MAJOR == 3
template<>
PyObject* pyopencv_from(const std::string& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#endif
// --- Size
template<>
bool pyopencv_to(PyObject* obj, Size& sz, const ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(sz.width),
RefWrapper<int>(sz.height)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Size& sz)
{
return Py_BuildValue("(ii)", sz.width, sz.height);
}
template<>
bool pyopencv_to(PyObject* obj, Size_<float>& sz, const ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(sz.width),
RefWrapper<float>(sz.height)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Size_<float>& sz)
{
return Py_BuildValue("(ff)", sz.width, sz.height);
}
// --- Rect
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(r.x), RefWrapper<int>(r.y),
RefWrapper<int>(r.width),
RefWrapper<int>(r.height)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Rect& r)
{
return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
}
template<>
bool pyopencv_to(PyObject* obj, Rect2d& r, const ArgInfo& info)
{
RefWrapper<double> values[] = {
RefWrapper<double>(r.x), RefWrapper<double>(r.y),
RefWrapper<double>(r.width), RefWrapper<double>(r.height)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Rect2d& r)
{
return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height);
}
// --- RotatedRect
static inline bool convertToRotatedRect(PyObject* obj, RotatedRect& dst)
{
PyObject* type = PyObject_Type(obj);
if (getPyObjectAttr(type, "__module__") == MODULESTR &&
getPyObjectNameAttr(type) == "RotatedRect")
{
struct pyopencv_RotatedRect_t
{
PyObject_HEAD
cv::RotatedRect v;
};
dst = reinterpret_cast<pyopencv_RotatedRect_t*>(obj)->v;
Py_DECREF(type);
return true;
}
Py_DECREF(type);
return false;
}
template<>
bool pyopencv_to(PyObject* obj, RotatedRect& dst, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
// This is a workaround for compatibility with an initialization from tuple.
// Allows import RotatedRect as an object.
if (convertToRotatedRect(obj, dst))
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s' as RotatedRect."
"Input argument doesn't provide sequence protocol",
info.name);
return false;
}
const std::size_t sequenceSize = PySequence_Size(obj);
if (sequenceSize != 3)
{
failmsg("Can't parse '%s' as RotatedRect. Expected sequence length 3, got %lu",
info.name, sequenceSize);
return false;
}
{
const String centerItemName = format("'%s' center point", info.name);
const ArgInfo centerItemInfo(centerItemName.c_str(), 0);
SafeSeqItem centerItem(obj, 0);
if (!pyopencv_to(centerItem.item, dst.center, centerItemInfo))
{
return false;
}
}
{
const String sizeItemName = format("'%s' size", info.name);
const ArgInfo sizeItemInfo(sizeItemName.c_str(), 0);
SafeSeqItem sizeItem(obj, 1);
if (!pyopencv_to(sizeItem.item, dst.size, sizeItemInfo))
{
return false;
}
}
{
const String angleItemName = format("'%s' angle", info.name);
const ArgInfo angleItemInfo(angleItemName.c_str(), 0);
SafeSeqItem angleItem(obj, 2);
if (!pyopencv_to(angleItem.item, dst.angle, angleItemInfo))
{
return false;
}
}
return true;
}
template<>
PyObject* pyopencv_from(const RotatedRect& src)
{
return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
}
// --- Range
template<>
bool pyopencv_to(PyObject* obj, Range& r, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (PyObject_Size(obj) == 0)
{
r = Range::all();
return true;
}
RefWrapper<int> values[] = {RefWrapper<int>(r.start), RefWrapper<int>(r.end)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Range& r)
{
return Py_BuildValue("(ii)", r.start, r.end);
}
// --- Point
template<>
bool pyopencv_to(PyObject* obj, Point& p, const ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(p.x), RefWrapper<int>(p.y)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Point& p)
{
return Py_BuildValue("(ii)", p.x, p.y);
}
template <>
bool pyopencv_to(PyObject* obj, Point2f& p, const ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(p.x),
RefWrapper<float>(p.y)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Point2f& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<>
bool pyopencv_to(PyObject* obj, Point2d& p, const ArgInfo& info)
{
RefWrapper<double> values[] = {RefWrapper<double>(p.x),
RefWrapper<double>(p.y)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Point2d& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<>
bool pyopencv_to(PyObject* obj, Point3f& p, const ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(p.x),
RefWrapper<float>(p.y),
RefWrapper<float>(p.z)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Point3f& p)
{
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
}
template<>
bool pyopencv_to(PyObject* obj, Point3d& p, const ArgInfo& info)
{
RefWrapper<double> values[] = {RefWrapper<double>(p.x),
RefWrapper<double>(p.y),
RefWrapper<double>(p.z)};
return parseSequence(obj, values, info);
}
template<>
PyObject* pyopencv_from(const Point3d& p)
{
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
}
// --- Vec
bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo& info)
{
RefWrapper<double> values[] = {RefWrapper<double>(v[0]), RefWrapper<double>(v[1]),
RefWrapper<double>(v[2]), RefWrapper<double>(v[3])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec4d& v)
{
return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]);
}
bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(v[0]), RefWrapper<float>(v[1]),
RefWrapper<float>(v[2]), RefWrapper<float>(v[3])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec4f& v)
{
return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]);
}
bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1]),
RefWrapper<int>(v[2]), RefWrapper<int>(v[3])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec4i& v)
{
return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]);
}
bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo& info)
{
RefWrapper<double> values[] = {RefWrapper<double>(v[0]),
RefWrapper<double>(v[1]),
RefWrapper<double>(v[2])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec3d& v)
{
return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
}
bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(v[0]),
RefWrapper<float>(v[1]),
RefWrapper<float>(v[2])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec3f& v)
{
return Py_BuildValue("(fff)", v[0], v[1], v[2]);
}
bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1]),
RefWrapper<int>(v[2])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec3i& v)
{
return Py_BuildValue("(iii)", v[0], v[1], v[2]);
}
bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo& info)
{
RefWrapper<double> values[] = {RefWrapper<double>(v[0]),
RefWrapper<double>(v[1])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec2d& v)
{
return Py_BuildValue("(dd)", v[0], v[1]);
}
bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo& info)
{
RefWrapper<float> values[] = {RefWrapper<float>(v[0]),
RefWrapper<float>(v[1])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec2f& v)
{
return Py_BuildValue("(ff)", v[0], v[1]);
}
bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo& info)
{
RefWrapper<int> values[] = {RefWrapper<int>(v[0]), RefWrapper<int>(v[1])};
return parseSequence(obj, values, info);
}
PyObject* pyopencv_from(const Vec2i& v)
{
return Py_BuildValue("(ii)", v[0], v[1]);
}
// --- TermCriteria
template<>
bool pyopencv_to(PyObject* obj, TermCriteria& dst, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
if (!PySequence_Check(obj))
{
failmsg("Can't parse '%s' as TermCriteria."
"Input argument doesn't provide sequence protocol",
info.name);
return false;
}
const std::size_t sequenceSize = PySequence_Size(obj);
if (sequenceSize != 3) {
failmsg("Can't parse '%s' as TermCriteria. Expected sequence length 3, "
"got %lu",
info.name, sequenceSize);
return false;
}
{
const String typeItemName = format("'%s' criteria type", info.name);
const ArgInfo typeItemInfo(typeItemName.c_str(), 0);
SafeSeqItem typeItem(obj, 0);
if (!pyopencv_to(typeItem.item, dst.type, typeItemInfo))
{
return false;
}
}
{
const String maxCountItemName = format("'%s' max count", info.name);
const ArgInfo maxCountItemInfo(maxCountItemName.c_str(), 0);
SafeSeqItem maxCountItem(obj, 1);
if (!pyopencv_to(maxCountItem.item, dst.maxCount, maxCountItemInfo))
{
return false;
}
}
{
const String epsilonItemName = format("'%s' epsilon", info.name);
const ArgInfo epsilonItemInfo(epsilonItemName.c_str(), 0);
SafeSeqItem epsilonItem(obj, 2);
if (!pyopencv_to(epsilonItem.item, dst.epsilon, epsilonItemInfo))
{
return false;
}
}
return true;
}
template<>
PyObject* pyopencv_from(const TermCriteria& src)
{
return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
}
// --- Moments
template<>
PyObject* pyopencv_from(const Moments& m)
{
return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
"m00", m.m00, "m10", m.m10, "m01", m.m01,
"m20", m.m20, "m11", m.m11, "m02", m.m02,
"m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
"mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
"mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
"nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03);
}
// --- pair
template<>
PyObject* pyopencv_from(const std::pair<int, double>& src)
{
return Py_BuildValue("(id)", src.first, src.second);
}