2020-07-06 22:32:42 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace opencv_test {
|
|
|
|
|
|
|
|
struct Layer_Slice : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
template<int DIMS>
|
|
|
|
void test_slice(const int* inputShape, const int* begin, const int* end)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
|
|
|
|
for (int i = 0; i < (int)input.total(); ++i)
|
|
|
|
input.ptr<float>()[i] = (float)(i & 4095);
|
|
|
|
|
|
|
|
std::vector<Range> range(DIMS);
|
|
|
|
for (int i = 0; i < DIMS; ++i)
|
|
|
|
range[i] = Range(begin[i], end[i]);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Slice";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
|
|
|
|
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
|
|
|
|
EXPECT_GT(cv::norm(out, NORM_INF), 0);
|
|
|
|
#if 0
|
|
|
|
//normAssert(out, input(range));
|
|
|
|
cout << input(range).clone().reshape(1, 1) << endl;
|
|
|
|
cout << out.reshape(1, 1) << endl;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-02-10 19:33:59 +08:00
|
|
|
static std::set<std::string> nary_eltwise_cuda_deny_ops = {"equal", "greater", "less", "mean", "pow", "sub"};
|
2022-10-21 13:11:22 +08:00
|
|
|
|
2022-07-19 11:14:05 +08:00
|
|
|
struct Layer_NaryEltwise : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& a_shape, const std::vector<int>& b_shape, const String op, bool isRef = false)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
2022-10-21 13:11:22 +08:00
|
|
|
if (!isRef && backendId == DNN_BACKEND_CUDA)
|
|
|
|
{
|
2023-04-23 17:46:50 +08:00
|
|
|
if (a_shape.size() != b_shape.size())
|
|
|
|
throw SkipTestException("The test is skipped because inputs with different shape size are not supported.");
|
|
|
|
|
|
|
|
for(int i = 0; i < a_shape.size(); i++)
|
|
|
|
if (a_shape[i] != b_shape[i] && a_shape[i] != 1 && b_shape[i] != 1)
|
|
|
|
throw SkipTestException("The test is skipped because inputs are not supported.");
|
|
|
|
|
2022-10-21 13:11:22 +08:00
|
|
|
if (nary_eltwise_cuda_deny_ops.find(op) != nary_eltwise_cuda_deny_ops.end())
|
|
|
|
throw SkipTestException("The operator '" + op + "' is skipped because is not support with cuda currently.");
|
|
|
|
}
|
2022-07-19 11:14:05 +08:00
|
|
|
Mat a(a_shape, CV_32FC1);
|
|
|
|
Mat b(b_shape, CV_32FC1);
|
|
|
|
|
|
|
|
Scalar mean = 0.f;
|
|
|
|
Scalar std = 1.f;
|
|
|
|
randn(a, mean, std);
|
|
|
|
randn(b, mean, std);
|
|
|
|
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
if (isRef)
|
|
|
|
lp.type = "Eltwise";
|
|
|
|
else
|
|
|
|
lp.type = "NaryEltwise";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("operation", op);
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames(2);
|
|
|
|
inpNames[0] = "a";
|
|
|
|
inpNames[1] = "b";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(a, inpNames[0]);
|
|
|
|
net.setInput(b, inpNames[1]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
int N = 8;
|
|
|
|
int C = 256;
|
|
|
|
int H = 128;
|
|
|
|
int W = 100;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_add)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "add");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_div)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "div");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_div)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "div", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_equal)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "equal");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_greater)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "greater");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_less)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "less");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_max)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "max");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_max)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "max", true);
|
|
|
|
}
|
2020-07-06 22:32:42 +08:00
|
|
|
|
2022-07-19 11:14:05 +08:00
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mean)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "mean");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_min)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "min");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_min)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "min", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mul)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "mul");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_mul)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "prod", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_pow)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "pow");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sub)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "sub");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sum)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "sum");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_sum)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {N, C, H, W}, "sum", true);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NCHW_C_sum)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, {C, 1, 1}, "sum");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NHWC_C)
|
|
|
|
{
|
|
|
|
test_layer({N, H, W, C}, {1, C}, "sum");
|
|
|
|
}
|
2020-07-06 22:32:42 +08:00
|
|
|
|
2023-04-23 17:46:50 +08:00
|
|
|
PERF_TEST_P_(Layer_NaryEltwise, NHWC_H)
|
|
|
|
{
|
|
|
|
test_layer({N, H, W, C}, {1, H, 1, 1}, "sum");
|
|
|
|
}
|
|
|
|
|
2020-07-06 22:32:42 +08:00
|
|
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_1)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 64, 104, 104};
|
|
|
|
const int begin[] = {0, 32, 0, 0};
|
|
|
|
const int end[] = {1, 64, 104, 104};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_2)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 128, 52, 52};
|
|
|
|
const int begin[] = {0, 64, 0, 0};
|
|
|
|
const int end[] = {1, 128, 52, 52};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_3)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 256, 26, 26};
|
|
|
|
const int begin[] = {0, 128, 0, 0};
|
|
|
|
const int end[] = {1, 256, 26, 26};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_Slice, FastNeuralStyle_eccv16)
|
|
|
|
{
|
|
|
|
const int inputShape[4] = {1, 128, 80, 100};
|
|
|
|
const int begin[] = {0, 0, 2, 2};
|
|
|
|
const int end[] = {1, 128, 76, 96};
|
|
|
|
test_slice<4>(inputShape, begin, end);
|
|
|
|
}
|
|
|
|
|
2024-01-05 17:24:09 +08:00
|
|
|
using Layer_Scatter = TestBaseWithParam<tuple<std::vector<int>, std::string, int, tuple<Backend, Target>>>;
|
|
|
|
PERF_TEST_P_(Layer_Scatter, scatter) {
|
|
|
|
std::vector<int> shape = get<0>(GetParam());
|
|
|
|
std::string reduction = get<1>(GetParam());
|
|
|
|
int axis = get<2>(GetParam());
|
|
|
|
int backend_id = get<0>(get<3>(GetParam()));
|
|
|
|
int target_id = get<1>(get<3>(GetParam()));
|
|
|
|
|
|
|
|
Mat data(shape, CV_32FC1);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
Mat indices(shape, CV_64SC1);
|
2024-01-05 17:24:09 +08:00
|
|
|
Mat updates(shape, CV_32FC1);
|
|
|
|
|
|
|
|
randn(data, 0.f, 1.f);
|
|
|
|
randu(indices, 0, shape[axis]);
|
|
|
|
randn(updates, 0.f, 1.f);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Scatter";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("reduction", reduction);
|
|
|
|
lp.set("axis", axis);
|
|
|
|
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
|
|
|
|
|
|
|
// warmup
|
2022-09-18 22:13:55 +08:00
|
|
|
{
|
2024-01-05 17:24:09 +08:00
|
|
|
std::vector<String> input_names{"data", "indices", "updates"};
|
|
|
|
net.setInputsNames(input_names);
|
|
|
|
net.setInput(data, input_names[0]);
|
|
|
|
net.setInput(indices, input_names[1]);
|
|
|
|
net.setInput(updates, input_names[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend_id);
|
|
|
|
net.setPreferableTarget(target_id);
|
|
|
|
Mat out = net.forward();
|
2022-09-18 22:13:55 +08:00
|
|
|
}
|
|
|
|
|
2024-01-05 17:24:09 +08:00
|
|
|
// perf
|
|
|
|
TEST_CYCLE()
|
2022-09-18 22:13:55 +08:00
|
|
|
{
|
2024-01-05 17:24:09 +08:00
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 17:24:09 +08:00
|
|
|
SANITY_CHECK_NOTHING();
|
2022-09-18 22:13:55 +08:00
|
|
|
}
|
|
|
|
|
2024-01-05 17:24:09 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Scatter, Combine(
|
|
|
|
Values(std::vector<int>{2, 128, 64, 50}),
|
|
|
|
Values(std::string("none"), std::string("add")),
|
|
|
|
Values(0), // use Values(0, 1, 2, 3) for more details
|
|
|
|
dnnBackendsAndTargets(/* withInferenceEngine= */ false,
|
|
|
|
/* withHalide= */ false,
|
|
|
|
/* withCpuOCV= */ true,
|
|
|
|
/* withVkCom= */ false,
|
|
|
|
/* withCUDA= */ false,
|
|
|
|
/* withNgraph= */ false,
|
|
|
|
/* withWebnn= */ false,
|
|
|
|
/* withCann= */ false) // only test on CPU
|
|
|
|
));
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
using Layer_ScatterND = TestBaseWithParam<tuple<std::vector<int>, std::string, tuple<Backend, Target>>>;
|
|
|
|
PERF_TEST_P_(Layer_ScatterND, scatterND) {
|
|
|
|
std::vector<int> shape = get<0>(GetParam());
|
|
|
|
std::string reduction = get<1>(GetParam());
|
|
|
|
int backend_id = get<0>(get<2>(GetParam()));
|
|
|
|
int target_id = get<1>(get<2>(GetParam()));
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
std::vector<int> indices_shape(shape);
|
|
|
|
indices_shape.push_back(int(shape.size()));
|
|
|
|
Mat data(shape, CV_32FC1);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
Mat indices(indices_shape, CV_32SC1);
|
2024-01-05 18:15:59 +08:00
|
|
|
Mat updates(shape, CV_32FC1);
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
randn(data, 0.f, 1.f);
|
|
|
|
randn(updates, 0.f, 1.f);
|
|
|
|
|
2024-01-08 11:55:06 +08:00
|
|
|
// Create indices such that indices[n_i, c_j, h_k, w_l, :4] = [i, j, k, l]
|
2024-01-05 18:15:59 +08:00
|
|
|
std::vector<int> current_index_tuple(shape.size());
|
|
|
|
int total = data.total();
|
|
|
|
std::vector<int> indices_step;
|
|
|
|
for (int i = 0; i < indices.dims; i++)
|
|
|
|
{
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
int step = indices.step.p[i] / sizeof(int32_t);
|
2024-01-05 18:15:59 +08:00
|
|
|
indices_step.push_back(step);
|
|
|
|
}
|
|
|
|
int t, j, idx, offset_at_idx, offset;
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
auto *indices_ptr = indices.ptr<int32_t>();
|
2024-01-05 18:15:59 +08:00
|
|
|
for (int i = 0; i < total; i++)
|
|
|
|
{
|
|
|
|
t = i;
|
|
|
|
for (j = shape.size() - 1; j >= 0; j--)
|
2022-09-18 22:13:55 +08:00
|
|
|
{
|
2024-01-05 18:15:59 +08:00
|
|
|
idx = t / shape[j];
|
|
|
|
offset_at_idx = (int)(t - idx * shape[j]);
|
|
|
|
current_index_tuple[j] = offset_at_idx;
|
|
|
|
t = idx;
|
2022-09-18 22:13:55 +08:00
|
|
|
}
|
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
offset = 0;
|
|
|
|
for (j = 0; j < shape.size(); j++)
|
|
|
|
offset += current_index_tuple[j] * indices_step[j];
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
for (j = 0; j < shape.size(); j++)
|
2024-01-06 02:33:01 +08:00
|
|
|
indices_ptr[offset + j] = current_index_tuple[j];
|
2024-01-05 18:15:59 +08:00
|
|
|
}
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "ScatterND";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("reduction", reduction);
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> input_names{"data", "indices", "updates"};
|
|
|
|
net.setInputsNames(input_names);
|
|
|
|
net.setInput(data, input_names[0]);
|
|
|
|
net.setInput(indices, input_names[1]);
|
|
|
|
net.setInput(updates, input_names[2]);
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
net.setPreferableBackend(backend_id);
|
|
|
|
net.setPreferableTarget(target_id);
|
|
|
|
Mat out = net.forward();
|
2022-09-18 22:13:55 +08:00
|
|
|
}
|
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
SANITY_CHECK_NOTHING();
|
2022-09-18 22:13:55 +08:00
|
|
|
}
|
|
|
|
|
2024-01-05 18:15:59 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_ScatterND, Combine(
|
|
|
|
Values(std::vector<int>{2, 128, 64, 50}),
|
|
|
|
Values(std::string("none"), std::string("add")),
|
|
|
|
dnnBackendsAndTargets(/* withInferenceEngine= */ false,
|
|
|
|
/* withHalide= */ false,
|
|
|
|
/* withCpuOCV= */ true,
|
|
|
|
/* withVkCom= */ false,
|
|
|
|
/* withCUDA= */ false,
|
|
|
|
/* withNgraph= */ false,
|
|
|
|
/* withWebnn= */ false,
|
|
|
|
/* withCann= */ false) // only test on CPU
|
|
|
|
));
|
2022-09-18 22:13:55 +08:00
|
|
|
|
2023-01-27 21:35:59 +08:00
|
|
|
struct Layer_LayerNorm : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& x_shape)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat x(x_shape, CV_32FC1);
|
|
|
|
Mat scale(x_shape.back(), 1, CV_32FC1);
|
|
|
|
Mat b(x_shape.back(), 1, CV_32FC1);
|
|
|
|
|
|
|
|
randu(x, 0.f, 1.f);
|
|
|
|
randu(scale, 0.f, 1.f);
|
|
|
|
randu(b, 0.f, 1.f);
|
|
|
|
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "LayerNormalization";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("axis", 2);
|
|
|
|
lp.set("hasBias", true);
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames(3);
|
|
|
|
inpNames[0] = "x";
|
|
|
|
inpNames[1] = "scale";
|
|
|
|
inpNames[2] = "b";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(x, inpNames[0]);
|
|
|
|
net.setInput(scale, inpNames[1]);
|
|
|
|
net.setInput(b, inpNames[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
int N = 1;
|
|
|
|
int H = 50;
|
|
|
|
int W = 768;
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_LayerNorm, LayerNorm)
|
|
|
|
{
|
|
|
|
test_layer({N, H ,W});
|
|
|
|
}
|
|
|
|
|
|
|
|
struct Layer_LayerNormExpanded : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& x_shape)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat x(x_shape, CV_32FC1);
|
|
|
|
Mat scale(1, x_shape.back(), CV_32FC1); // transpose to pass shape check
|
|
|
|
Mat b(1, x_shape.back(), CV_32FC1); // transpose to pass shape check
|
|
|
|
|
|
|
|
randu(x, 0.f, 1.f);
|
|
|
|
randu(scale, 0.f, 1.f);
|
|
|
|
randu(b, 0.f, 1.f);
|
|
|
|
|
|
|
|
// sub graph structure:
|
|
|
|
// -> ReduceMean -> -> Pow(2) -> ReduceMean -> Add(epsilon) -> Sqrt ->
|
|
|
|
// x Sub Div -> Mul(scale) -> Add(bias)
|
|
|
|
// ---------------> ------------------------------------------------->
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
|
|
|
|
LayerParams lp_rm;
|
|
|
|
lp_rm.type = "Reduce";
|
|
|
|
lp_rm.name = "reducemean1";
|
|
|
|
lp_rm.set("reduce", "AVE");
|
|
|
|
std::vector<int> deleteDims(1, x_shape.back());
|
|
|
|
lp_rm.set("deleted_dims", DictValue::arrayInt(&deleteDims[0], deleteDims.size()));
|
|
|
|
std::vector<int> targetDims(x_shape.begin(), x_shape.end());
|
|
|
|
targetDims[x_shape.size() - 1] = 1;
|
|
|
|
lp_rm.set("target_dims", DictValue::arrayInt(&targetDims[0], targetDims.size()));
|
|
|
|
int id_rm = net.addLayerToPrev(lp_rm.name, lp_rm.type, lp_rm);
|
|
|
|
net.connect(0, 0, id_rm, 0);
|
|
|
|
|
|
|
|
LayerParams lp_sub;
|
|
|
|
lp_sub.type = "NaryEltwise";
|
|
|
|
lp_sub.name = "sub1";
|
|
|
|
lp_sub.set("operation", "sub");
|
|
|
|
int id_sub = net.addLayer(lp_sub.name, lp_sub.type, lp_sub);
|
|
|
|
net.connect(0, 0, id_sub, 0);
|
|
|
|
net.connect(id_rm, 0, id_sub, 1);
|
|
|
|
|
|
|
|
Mat pow_const(1, 1, CV_32FC1);
|
|
|
|
pow_const.at<float>(0) = 2.f;
|
|
|
|
LayerParams lp_pow_const;
|
|
|
|
lp_pow_const.type = "Const";
|
|
|
|
lp_pow_const.name = "const1";
|
|
|
|
lp_pow_const.blobs.push_back(pow_const);
|
|
|
|
int id_pow_const = net.addLayer(lp_pow_const.name, lp_pow_const.type, lp_pow_const);
|
|
|
|
LayerParams lp_pow;
|
|
|
|
lp_pow.type = "NaryEltwise";
|
|
|
|
lp_pow.name = "pow1";
|
|
|
|
lp_pow.set("operation", "pow");
|
|
|
|
int id_pow = net.addLayer(lp_pow.name, lp_pow.type, lp_pow);
|
|
|
|
net.connect(id_sub, 0, id_pow, 0);
|
|
|
|
net.connect(id_pow_const, 0, id_pow, 1);
|
|
|
|
|
|
|
|
LayerParams lp_rm1;
|
|
|
|
lp_rm1.type = "Reduce";
|
|
|
|
lp_rm1.name = "reducemean2";
|
|
|
|
lp_rm1.set("reduce", "AVE");
|
|
|
|
lp_rm1.set("deleted_dims", DictValue::arrayInt(&deleteDims[0], deleteDims.size()));
|
|
|
|
lp_rm1.set("target_dims", DictValue::arrayInt(&targetDims[0], targetDims.size()));
|
|
|
|
int id_rm1 = net.addLayer(lp_rm1.name, lp_rm1.type, lp_rm1);
|
|
|
|
net.connect(id_pow, 0, id_rm1, 0);
|
|
|
|
|
|
|
|
Mat add_const(1, 1, CV_32F);
|
|
|
|
add_const.at<float>(0) = 1e-5;
|
|
|
|
LayerParams lp_add_const;
|
|
|
|
lp_add_const.type = "Const";
|
|
|
|
lp_add_const.name = "const2";
|
|
|
|
lp_add_const.blobs.push_back(add_const);
|
|
|
|
int id_add_const = net.addLayer(lp_add_const.name, lp_add_const.type, lp_add_const);
|
|
|
|
LayerParams lp_add;
|
|
|
|
lp_add.type = "NaryEltwise";
|
|
|
|
lp_add.name = "add1";
|
|
|
|
lp_add.set("operation", "add");
|
|
|
|
int id_add = net.addLayer(lp_add.name, lp_add.type, lp_add);
|
|
|
|
net.connect(id_rm1, 0, id_add, 0);
|
|
|
|
net.connect(id_add_const, 0, id_add, 1);
|
|
|
|
|
|
|
|
LayerParams lp_sqrt;
|
|
|
|
lp_sqrt.type = "Sqrt";
|
|
|
|
lp_sqrt.name = "sqrt1";
|
|
|
|
int id_sqrt = net.addLayer(lp_sqrt.name, lp_sqrt.type, lp_sqrt);
|
|
|
|
net.connect(id_add, 0, id_sqrt, 0);
|
|
|
|
|
|
|
|
LayerParams lp_div;
|
|
|
|
lp_div.type = "NaryEltwise";
|
|
|
|
lp_div.name = "div1";
|
|
|
|
lp_div.set("operation", "div");
|
|
|
|
int id_div = net.addLayer(lp_div.name, lp_div.type, lp_div);
|
|
|
|
net.connect(id_sub, 0, id_div, 0);
|
|
|
|
net.connect(id_sqrt, 0, id_div, 1);
|
|
|
|
|
|
|
|
LayerParams lp_mul;
|
|
|
|
lp_mul.type = "NaryEltwise";
|
|
|
|
lp_mul.name = "mul1";
|
|
|
|
lp_mul.set("operation", "mul");
|
|
|
|
int id_mul = net.addLayer(lp_mul.name, lp_mul.type, lp_mul);
|
|
|
|
net.connect(id_div, 0, id_mul, 0);
|
|
|
|
net.connect(0, 1, id_mul, 1);
|
|
|
|
|
|
|
|
LayerParams lp_add1;
|
|
|
|
lp_add1.type = "NaryEltwise";
|
|
|
|
lp_add1.name = "add2";
|
|
|
|
lp_add1.set("operation", "add");
|
|
|
|
int id_add1 = net.addLayer(lp_add1.name, lp_add1.type, lp_add1);
|
|
|
|
net.connect(id_mul, 0, id_add1, 0);
|
|
|
|
net.connect(0, 2, id_add1, 1);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames(3);
|
|
|
|
inpNames[0] = "x";
|
|
|
|
inpNames[1] = "scale";
|
|
|
|
inpNames[2] = "b";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(x, inpNames[0]);
|
|
|
|
net.setInput(scale, inpNames[1]);
|
|
|
|
net.setInput(b, inpNames[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
int N = 1;
|
|
|
|
int H = 50;
|
|
|
|
int W = 768;
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_LayerNormExpanded, DISABLED_LayerNormExpanded)
|
|
|
|
{
|
|
|
|
test_layer({N, H ,W});
|
|
|
|
}
|
|
|
|
|
2023-10-18 15:41:47 +08:00
|
|
|
struct Layer_GatherElements : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& data_shape, const std::vector<int>& indices_shape, int axis = 0)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat data(data_shape, CV_32FC1);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
Mat indices(indices_shape, CV_64SC1);
|
2023-10-18 15:41:47 +08:00
|
|
|
|
|
|
|
randu(data, 0.f, 1.f);
|
|
|
|
randu(indices, 0, data_shape[axis]);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "GatherElements";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames(3);
|
|
|
|
inpNames[0] = "data";
|
|
|
|
inpNames[1] = "indices";
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(data, inpNames[0]);
|
|
|
|
net.setInput(indices, inpNames[1]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_GatherElements, GatherElements)
|
|
|
|
{
|
|
|
|
test_layer({2700, 1, 2914}, {2700, 1, 81}, 2);
|
|
|
|
}
|
|
|
|
|
2023-11-07 17:59:10 +08:00
|
|
|
struct Layer_InstanceNorm : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& x_shape)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat x(x_shape, CV_32FC1);
|
|
|
|
Mat scale(x_shape[1], 1, CV_32FC1);
|
|
|
|
Mat b(x_shape[1], 1, CV_32FC1);
|
|
|
|
|
|
|
|
randu(x, 0.f, 1.f);
|
|
|
|
randu(scale, 0.f, 1.f);
|
|
|
|
randu(b, 0.f, 1.f);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "InstanceNormalization";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames{"x", "scale", "b"};
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(x, inpNames[0]);
|
|
|
|
net.setInput(scale, inpNames[1]);
|
|
|
|
net.setInput(b, inpNames[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
int N = 2;
|
|
|
|
int C = 64;
|
|
|
|
int H = 180;
|
|
|
|
int W = 240;
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_InstanceNorm, InstanceNorm)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W});
|
|
|
|
}
|
|
|
|
|
2023-12-21 00:35:07 +08:00
|
|
|
struct Layer_Attention : public TestBaseWithParam<tuple<Backend, Target>> {
|
|
|
|
void test_layer(const std::vector<int> x_shape, const std::vector<int> qkv_hidden_sizes, const int num_heads) {
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
auto qk_hidden_size = qkv_hidden_sizes[0];
|
|
|
|
auto v_hidden_size = qkv_hidden_sizes[2];
|
|
|
|
|
|
|
|
auto input_hidden_size = x_shape[2];
|
|
|
|
auto hidden_size = qk_hidden_size + qk_hidden_size + v_hidden_size;
|
|
|
|
|
|
|
|
Mat x(x_shape, CV_32F);
|
|
|
|
Mat weight(std::vector<int>{input_hidden_size, hidden_size}, CV_32F);
|
|
|
|
Mat bias(std::vector<int>{hidden_size}, CV_32F);
|
|
|
|
|
|
|
|
randu(x, 0.f, 1.f);
|
|
|
|
randu(weight, 0.f, 1.f);
|
|
|
|
randu(bias, 0.f, 1.f);
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Attention";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("num_heads", num_heads);
|
|
|
|
lp.set("qkv_hidden_sizes", DictValue::arrayInt(qkv_hidden_sizes.data(), qkv_hidden_sizes.size()));
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
|
|
|
|
|
|
|
{
|
|
|
|
std::vector<std::string> input_names{"x", "weight", "bias"};
|
|
|
|
net.setInputsNames(input_names);
|
|
|
|
net.setInput(x, input_names[0]);
|
|
|
|
net.setInput(weight, input_names[1]);
|
|
|
|
net.setInput(bias, input_names[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_Attention, VisionTransformer) {
|
|
|
|
test_layer({1, 197, 768}, {768, 768, 768}, 12);
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:13:26 +08:00
|
|
|
struct Layer_GroupNorm : public TestBaseWithParam<tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
void test_layer(const std::vector<int>& x_shape, int num_groups)
|
|
|
|
{
|
|
|
|
int backendId = get<0>(GetParam());
|
|
|
|
int targetId = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat x(x_shape, CV_32FC1);
|
|
|
|
Mat scale(x_shape[1], 1, CV_32FC1);
|
|
|
|
Mat b(x_shape[1], 1, CV_32FC1);
|
|
|
|
|
|
|
|
randu(x, 0.f, 1.f);
|
|
|
|
randu(scale, 0.f, 1.f);
|
|
|
|
randu(b, 0.f, 1.f);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "GroupNormalization";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("num_groups", num_groups);
|
|
|
|
|
|
|
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
net.connect(0, 0, id, 0);
|
|
|
|
net.connect(0, 1, id, 1);
|
|
|
|
net.connect(0, 2, id, 2);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
std::vector<String> inpNames{"x", "scale", "b"};
|
|
|
|
net.setInputsNames(inpNames);
|
|
|
|
net.setInput(x, inpNames[0]);
|
|
|
|
net.setInput(scale, inpNames[1]);
|
|
|
|
net.setInput(b, inpNames[2]);
|
|
|
|
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
int N = 2;
|
|
|
|
int C = 64;
|
|
|
|
int H = 180;
|
|
|
|
int W = 240;
|
|
|
|
int num_groups = 16;
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_GroupNorm, GroupNorm)
|
|
|
|
{
|
|
|
|
test_layer({N, C, H, W}, num_groups);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-07-06 22:32:42 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
|
2022-07-19 11:14:05 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2022-10-21 13:11:22 +08:00
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_CUDA, DNN_TARGET_CUDA)));
|
|
|
|
#endif
|
2024-01-29 23:41:49 +08:00
|
|
|
#ifdef HAVE_VULKAN
|
|
|
|
INSTANTIATE_TEST_CASE_P(VULKAN, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_VKCOM, DNN_TARGET_VULKAN)));
|
|
|
|
#endif
|
2023-01-27 21:35:59 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_LayerNorm, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_LayerNormExpanded, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2023-10-18 15:41:47 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_GatherElements, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2023-11-07 17:59:10 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_InstanceNorm, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2023-12-21 00:35:07 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Attention, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2024-01-12 20:13:26 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_GroupNorm, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
2023-08-03 14:13:42 +08:00
|
|
|
|
|
|
|
typedef TestBaseWithParam<tuple<Vec4i, int, bool, tuple<Backend, Target> > > Layer_FullyConnected;
|
|
|
|
PERF_TEST_P_(Layer_FullyConnected, fc)
|
|
|
|
{
|
|
|
|
std::vector<int> inpShape;
|
|
|
|
inpShape.reserve(4);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
int dim = get<0>(GetParam())[i];
|
|
|
|
if (dim == 0)
|
|
|
|
break;
|
|
|
|
inpShape.push_back(dim);
|
|
|
|
}
|
|
|
|
Mat input(inpShape, CV_32F);
|
|
|
|
randn(input, 0, 1);
|
|
|
|
|
|
|
|
int axis = input.dims - 1;
|
|
|
|
int outDims = get<1>(GetParam());
|
|
|
|
bool isMatMul = get<2>(GetParam());
|
|
|
|
int backendId = get<0>(get<3>(GetParam()));
|
|
|
|
int targetId = get<1>(get<3>(GetParam()));
|
|
|
|
|
2023-12-25 12:57:02 +08:00
|
|
|
if (inpShape.size() == 4 && inpShape[0] == 5 && inpShape[1] == 16 && inpShape[2] == 512 && inpShape[3] == 128 && outDims >= 512)
|
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2023-08-03 14:13:42 +08:00
|
|
|
std::vector<int> weightShape;
|
|
|
|
if (isMatMul) {
|
|
|
|
weightShape = inpShape;
|
|
|
|
weightShape[weightShape.size() - 2] = outDims;
|
|
|
|
} else {
|
|
|
|
weightShape = {outDims, (int)input.total(axis, input.dims)};
|
|
|
|
}
|
|
|
|
Mat weights(weightShape, CV_32F);
|
|
|
|
randn(weights, 0, 1);
|
|
|
|
|
|
|
|
LayerParams lp;
|
|
|
|
lp.set("axis", input.dims - 1);
|
|
|
|
lp.set("is_matmul", weights.dims > 2);
|
|
|
|
lp.set("bias_term", false);
|
|
|
|
lp.set("num_output", (int)weights.total(0, weights.dims - 1));
|
|
|
|
lp.blobs.resize(1, weights);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
net.addLayerToPrev("matmul", "InnerProduct", lp);
|
|
|
|
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
|
|
|
|
// warmup
|
|
|
|
Mat output = net.forward();
|
|
|
|
|
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
|
|
|
net.forward();
|
|
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_FullyConnected, Combine(
|
|
|
|
Values( // input size
|
|
|
|
Vec4i(5, 512, 384),
|
|
|
|
Vec4i(5, 16, 512, 128)
|
|
|
|
),
|
|
|
|
Values(256, 512, 1024), // output dimension
|
|
|
|
testing::Bool(), // is_matmul
|
|
|
|
dnnBackendsAndTargets()
|
|
|
|
));
|
|
|
|
|
2023-11-06 09:48:32 +08:00
|
|
|
typedef TestBaseWithParam<tuple<std::vector<int>, int, tuple<Backend, Target> > > Layer_Softmax;
|
|
|
|
PERF_TEST_P_(Layer_Softmax, softmax_3d) {
|
|
|
|
std::vector<int> shape = get<0>(GetParam());
|
|
|
|
int axis = get<1>(GetParam());
|
|
|
|
int backendId = get<0>(get<2>(GetParam()));
|
|
|
|
int targetId = get<1>(get<2>(GetParam()));
|
|
|
|
|
|
|
|
Mat data(shape, CV_32FC1);
|
|
|
|
Scalar mean = 0.f;
|
|
|
|
Scalar std = 1.f;
|
|
|
|
randn(data, mean, std);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "Softmax";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("axis", axis);
|
|
|
|
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
// warmup
|
|
|
|
{
|
|
|
|
net.setInput(data);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
Mat out = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE() {
|
|
|
|
Mat res = net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Softmax, Combine(
|
|
|
|
Values( // input size
|
|
|
|
std::vector<int>({16, 50, 50}),
|
|
|
|
std::vector<int>({16, 197, 197}),
|
|
|
|
std::vector<int>({16, 1024, 1024})
|
|
|
|
),
|
|
|
|
Values(0, 1, 2), // axis
|
|
|
|
dnnBackendsAndTargets(/* withInferenceEngine= */ false,
|
|
|
|
/* withHalide= */ false,
|
|
|
|
/* withCpuOCV= */ true,
|
|
|
|
/* withVkCom= */ false,
|
|
|
|
/* withCUDA= */ false,
|
|
|
|
/* withNgraph= */ false,
|
|
|
|
/* withWebnn= */ false,
|
|
|
|
/* withCann= */ false) // only test on CPU
|
|
|
|
));
|
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
struct Layer_Elementwise : public TestBaseWithParam<tuple<Backend, Target>> {
|
|
|
|
void test_layer(const std::string &op_type, const std::vector<int> &input_shape) {
|
|
|
|
int backend_id = get<0>(GetParam());
|
|
|
|
int target_id = get<1>(GetParam());
|
2024-07-08 19:24:36 +08:00
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
Mat input(input_shape, CV_32F);
|
|
|
|
randu(input, -10.0f, 10.f);
|
2024-07-08 19:24:36 +08:00
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
LayerParams lp;
|
|
|
|
lp.type = op_type;
|
|
|
|
lp.name = cv::format("PerfLayer/%s", op_type.c_str());
|
2024-07-08 19:24:36 +08:00
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
Net net;
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
2024-07-08 19:24:36 +08:00
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
// Warmup
|
|
|
|
{
|
|
|
|
net.setInput(input);
|
|
|
|
net.setPreferableBackend(backend_id);
|
|
|
|
net.setPreferableTarget(target_id);
|
|
|
|
net.forward();
|
|
|
|
}
|
2024-07-08 19:24:36 +08:00
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
TEST_CYCLE() {
|
|
|
|
net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
2024-07-08 19:24:36 +08:00
|
|
|
}
|
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
int N = 2;
|
|
|
|
int C = 32;
|
|
|
|
int H = 416;
|
|
|
|
int W = 416;
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Gelu) {
|
|
|
|
test_layer("Gelu", std::vector<int>{1, 50, 3072});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Swish) {
|
|
|
|
test_layer("Swish", std::vector<int>{N, C, H, W});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Mish) {
|
|
|
|
test_layer("Mish", std::vector<int>{N, C, H, W});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Elu) {
|
|
|
|
test_layer("ELU", std::vector<int>{N, C, H, W});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Celu) {
|
|
|
|
test_layer("Celu", std::vector<int>{N, C, H, W});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, Selu) {
|
|
|
|
test_layer("Selu", std::vector<int>{N, C, H, W});
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_Elementwise, HardSwish) {
|
|
|
|
test_layer("HardSwish", std::vector<int>{N, C, H, W});
|
2024-07-08 19:24:36 +08:00
|
|
|
}
|
|
|
|
|
2024-07-19 21:03:19 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Elementwise,
|
|
|
|
dnnBackendsAndTargets(/* withInferenceEngine= */ true,
|
|
|
|
/* withHalide= */ false,
|
|
|
|
/* withCpuOCV= */ true,
|
|
|
|
/* withVkCom= */ false,
|
|
|
|
/* withCUDA= */ true,
|
|
|
|
/* withNgraph= */ true,
|
|
|
|
/* withWebnn= */ false,
|
|
|
|
/* withCann= */ false));
|
2024-07-08 19:24:36 +08:00
|
|
|
|
Merge pull request #23279 from fengyuentau:add_topk
dnn: add ONNX TopK #23279
Merge with https://github.com/opencv/opencv_extra/pull/1200
Partially fixes #22890 and #20258
To-do:
- [x] TopK forward impl
- [x] add tests
- [x] support Opset 1 & 10 if possible
- [ ] ~Support other backends~ (TopK has two outputs, which is not supported by other backends, such as openvino)
Perf:
M1 (time in millisecond)
| input shape | axis | dnn | ort |
| --------------- | ---- | ---- | ---- |
| (1000, 100) | 0 | 1.68 | 4.07 |
| (1000, 100) K5 | 0 | 1.13 | 0.12 |
| (1000, 100) | 1 | 0.96 | 0.77 |
| (100, 100, 100) | 0 | 10.00 | 31.13 |
| (100, 100, 100) | 1 | 7.33 | 9.17 |
| (100, 100, 100) | 2 | 7.52 | 9.48 |
M2 (time in milisecond)
| input shape | axis | dnn | ort |
| --------------- | ---- | ---- | ---- |
| (1000, 100) | 0 | 0.76 | 2.44 |
| (1000, 100) K5 | 0 | 0.68 | 0.07 |
| (1000, 100) | 1 | 0.41 | 0.50 |
| (100, 100, 100) | 0 | 4.83 | 17.52|
| (100, 100, 100) | 1 | 3.60 | 5.08 |
| (100, 100, 100) | 2 | 3.73 | 5.10 |
ONNXRuntime performance testing script: https://gist.github.com/fengyuentau/a119f94fd16721ec9974b8c7b0a45d4c
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-08-21 22:03:24 +08:00
|
|
|
struct Layer_TopK : public TestBaseWithParam<tuple<Backend, Target>> {
|
|
|
|
void test_layer(const std::vector<int> &input_shape, const int K, const int axis) {
|
|
|
|
int backend_id = get<0>(GetParam());
|
|
|
|
int target_id = get<1>(GetParam());
|
|
|
|
|
|
|
|
Mat input_data(input_shape, CV_32F);
|
|
|
|
randn(input_data, -1.f, 1.f);
|
|
|
|
|
|
|
|
Net net;
|
|
|
|
LayerParams lp;
|
|
|
|
lp.type = "TopK";
|
|
|
|
lp.name = "testLayer";
|
|
|
|
lp.set("k", K);
|
|
|
|
lp.set("axis", axis);
|
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
|
|
|
|
|
|
|
// Warmup
|
|
|
|
{
|
|
|
|
net.setInput(input_data);
|
|
|
|
net.setPreferableBackend(backend_id);
|
|
|
|
net.setPreferableTarget(target_id);
|
|
|
|
net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CYCLE() {
|
|
|
|
net.forward();
|
|
|
|
}
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> input_shape_2d{1000, 100};
|
|
|
|
std::vector<int> input_shape_3d{100, 100, 100};
|
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_2D_Axis0) {
|
|
|
|
test_layer(input_shape_2d, input_shape_2d[0] / 2, 0);
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_2D_Axis0_K5) {
|
|
|
|
test_layer(input_shape_2d, 5, 0);
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_2D_Axis1) {
|
|
|
|
test_layer(input_shape_2d, input_shape_2d[1] / 2, 1);
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_3D_Axis0) {
|
|
|
|
test_layer(input_shape_3d, input_shape_3d[0] / 2, 0);
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_3D_Axis1) {
|
|
|
|
test_layer(input_shape_3d, input_shape_3d[1] / 2, 1);
|
|
|
|
}
|
|
|
|
PERF_TEST_P_(Layer_TopK, TopK_3D_Axis2) {
|
|
|
|
test_layer(input_shape_3d, input_shape_3d[2] / 2, 2);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_TopK,
|
|
|
|
dnnBackendsAndTargets(/* withInferenceEngine= */ false,
|
|
|
|
/* withHalide= */ false,
|
|
|
|
/* withCpuOCV= */ true,
|
|
|
|
/* withVkCom= */ false,
|
|
|
|
/* withCUDA= */ false,
|
|
|
|
/* withNgraph= */ false,
|
|
|
|
/* withWebnn= */ false,
|
|
|
|
/* withCann= */ false));
|
|
|
|
|
2020-07-06 22:32:42 +08:00
|
|
|
} // namespace
|