opencv/apps/sft/misk/sft.py

167 lines
4.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import cv2, re, glob
import numpy as np
import matplotlib.pyplot as plt
def plot_curve():
fig, ax = plt.subplots()
fig.canvas.draw()
x = np.linspace(pow(10,-4), pow(10,1), 101)
y = 1 - x
plt.semilogy(x,y,color='m',linewidth=2)
plt.xlabel("fppi")
plt.ylabel("miss rate")
plt.title("ROC curve Bahnhof")
plt.yticks( [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.64, 0.80])
ylabels = [item.get_text() for item in ax.get_yticklabels()]
ax.set_yticklabels( ylabels )
plt.grid(True)
# plt.xticks( [pow(10, -4), pow(10, -3), pow(10, -2), pow(10, -1), pow(10, 0), pow(10, 0)])
# xlabels = [item.get_text() for item in ax.get_xticklabels()]
# ax.set_xticklabels( xlabels )
plt.xscale('log')
plt.show()
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
return x
def draw_rects(img, rects, color, l = lambda x, y : x + y):
if rects is not None:
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
def draw_dt(img, dts, color, l = lambda x, y : x + y):
if dts is not None:
for dt in dts:
bb = dt.bb
x1, y1, x2, y2 = dt.bb[0], dt.bb[1], dt.bb[2], dt.bb[3]
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
class Annotation:
def __init__(self, bb):
self.bb = bb
class Detection:
def __init__(self, bb, conf):
self.bb = bb
self.conf = conf
self.matched = False
# def crop(self):
# rel_scale = self.bb[1] / 128
def crop(self, factor):
print "was", self.bb
self.bb = crop_rect(self.bb, factor)
print "bec", self.bb
# we use rect-stype for dt and box style for gt. ToDo: fix it
def overlap(self, b):
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h)
union_area = (a[2] * a[3]) + ((b[2] - b[0]) * (b[3] - b[1])) - cross_area;
return cross_area / union_area
def mark_matched(self):
self.matched = True
def parse_inria(ipath, f):
bbs = []
path = None
for l in f:
box = None
if l.startswith("Bounding box"):
b = [x.strip() for x in l.split(":")[1].split("-")]
c = [x[1:-1].split(",") for x in b]
d = [int(x) for x in sum(c, [])]
bbs.append(d)
if l.startswith("Image filename"):
path = l.split('"')[-2]
return Sample(path, bbs)
def glob_set(pattern):
return [__n for __n in glob.iglob(pattern)] #glob.iglob(pattern)
# parse ETH idl file
def parse_idl(f):
map = {}
for l in open(f):
l = re.sub(r"^\"left\/", "{\"", l)
l = re.sub(r"\:", ":[", l)
l = re.sub(r"(\;|\.)$", "]}", l)
map.update(eval(l))
return map
def norm_box(box, ratio):
middle = float(box[0] + box[2]) / 2.0
new_half_width = float(box[3] - box[1]) * ratio / 2.0
return (int(round(middle - new_half_width)), box[1], int(round(middle + new_half_width)), box[3])
def norm_acpect_ratio(boxes, ratio):
return [ norm_box(box, ratio) for box in boxes]
def match(gts, rects, confs):
if rects is None:
return 0
fp = 0
fn = 0
dts = zip(*[rects.tolist(), confs.tolist()])
dts = zip(dts[0][0], dts[0][1])
dts = [Detection(r,c) for r, c in dts]
factor = 1.0 / 8.0
dt_old = dts
for dt in dts:
dt.crop(factor)
for gt in gts:
# exclude small
if gt[2] - gt[0] < 27:
continue
matched = False
for dt in dts:
# dt.crop()
overlap = dt.overlap(gt)
print dt.bb, "vs", gt, overlap
if overlap > 0.5:
dt.mark_matched()
matched = True
print "matched ", dt.bb, gt
if not matched:
fn = fn + 1
print "fn", fn
for dt in dts:
if not dt.matched:
fp = fp + 1
print "fp", fp
return dt_old