mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
150 lines
5.0 KiB
Python
150 lines
5.0 KiB
Python
|
from collections import namedtuple
|
||
|
import cv2 as cv
|
||
|
|
||
|
from .blender import Blender
|
||
|
from .stitching_error import StitchingError
|
||
|
|
||
|
|
||
|
class Rectangle(namedtuple('Rectangle', 'x y width height')):
|
||
|
__slots__ = ()
|
||
|
|
||
|
@property
|
||
|
def area(self):
|
||
|
return self.width * self.height
|
||
|
|
||
|
@property
|
||
|
def corner(self):
|
||
|
return (self.x, self.y)
|
||
|
|
||
|
@property
|
||
|
def size(self):
|
||
|
return (self.width, self.height)
|
||
|
|
||
|
@property
|
||
|
def x2(self):
|
||
|
return self.x + self.width
|
||
|
|
||
|
@property
|
||
|
def y2(self):
|
||
|
return self.y + self.height
|
||
|
|
||
|
def times(self, x):
|
||
|
return Rectangle(*(int(round(i*x)) for i in self))
|
||
|
|
||
|
def draw_on(self, img, color=(0, 0, 255), size=1):
|
||
|
if len(img.shape) == 2:
|
||
|
img = cv.cvtColor(img, cv.COLOR_GRAY2RGB)
|
||
|
start_point = (self.x, self.y)
|
||
|
end_point = (self.x2-1, self.y2-1)
|
||
|
cv.rectangle(img, start_point, end_point, color, size)
|
||
|
return img
|
||
|
|
||
|
|
||
|
class Cropper:
|
||
|
|
||
|
DEFAULT_CROP = False
|
||
|
|
||
|
def __init__(self, crop=DEFAULT_CROP):
|
||
|
self.do_crop = crop
|
||
|
self.overlapping_rectangles = []
|
||
|
self.cropping_rectangles = []
|
||
|
|
||
|
def prepare(self, imgs, masks, corners, sizes):
|
||
|
if self.do_crop:
|
||
|
mask = self.estimate_panorama_mask(imgs, masks, corners, sizes)
|
||
|
self.compile_numba_functionality()
|
||
|
lir = self.estimate_largest_interior_rectangle(mask)
|
||
|
corners = self.get_zero_center_corners(corners)
|
||
|
rectangles = self.get_rectangles(corners, sizes)
|
||
|
self.overlapping_rectangles = self.get_overlaps(
|
||
|
rectangles, lir)
|
||
|
self.intersection_rectangles = self.get_intersections(
|
||
|
rectangles, self.overlapping_rectangles)
|
||
|
|
||
|
def crop_images(self, imgs, aspect=1):
|
||
|
for idx, img in enumerate(imgs):
|
||
|
yield self.crop_img(img, idx, aspect)
|
||
|
|
||
|
def crop_img(self, img, idx, aspect=1):
|
||
|
if self.do_crop:
|
||
|
intersection_rect = self.intersection_rectangles[idx]
|
||
|
scaled_intersection_rect = intersection_rect.times(aspect)
|
||
|
cropped_img = self.crop_rectangle(img, scaled_intersection_rect)
|
||
|
return cropped_img
|
||
|
return img
|
||
|
|
||
|
def crop_rois(self, corners, sizes, aspect=1):
|
||
|
if self.do_crop:
|
||
|
scaled_overlaps = \
|
||
|
[r.times(aspect) for r in self.overlapping_rectangles]
|
||
|
cropped_corners = [r.corner for r in scaled_overlaps]
|
||
|
cropped_corners = self.get_zero_center_corners(cropped_corners)
|
||
|
cropped_sizes = [r.size for r in scaled_overlaps]
|
||
|
return cropped_corners, cropped_sizes
|
||
|
return corners, sizes
|
||
|
|
||
|
@staticmethod
|
||
|
def estimate_panorama_mask(imgs, masks, corners, sizes):
|
||
|
_, mask = Blender.create_panorama(imgs, masks, corners, sizes)
|
||
|
return mask
|
||
|
|
||
|
def compile_numba_functionality(self):
|
||
|
# numba functionality is only imported if cropping
|
||
|
# is explicitely desired
|
||
|
try:
|
||
|
import numba
|
||
|
except ModuleNotFoundError:
|
||
|
raise StitchingError("Numba is needed for cropping but not installed")
|
||
|
from .largest_interior_rectangle import largest_interior_rectangle
|
||
|
self.largest_interior_rectangle = largest_interior_rectangle
|
||
|
|
||
|
def estimate_largest_interior_rectangle(self, mask):
|
||
|
lir = self.largest_interior_rectangle(mask)
|
||
|
lir = Rectangle(*lir)
|
||
|
return lir
|
||
|
|
||
|
@staticmethod
|
||
|
def get_zero_center_corners(corners):
|
||
|
min_corner_x = min([corner[0] for corner in corners])
|
||
|
min_corner_y = min([corner[1] for corner in corners])
|
||
|
return [(x - min_corner_x, y - min_corner_y) for x, y in corners]
|
||
|
|
||
|
@staticmethod
|
||
|
def get_rectangles(corners, sizes):
|
||
|
rectangles = []
|
||
|
for corner, size in zip(corners, sizes):
|
||
|
rectangle = Rectangle(*corner, *size)
|
||
|
rectangles.append(rectangle)
|
||
|
return rectangles
|
||
|
|
||
|
@staticmethod
|
||
|
def get_overlaps(rectangles, lir):
|
||
|
return [Cropper.get_overlap(r, lir) for r in rectangles]
|
||
|
|
||
|
@staticmethod
|
||
|
def get_overlap(rectangle1, rectangle2):
|
||
|
x1 = max(rectangle1.x, rectangle2.x)
|
||
|
y1 = max(rectangle1.y, rectangle2.y)
|
||
|
x2 = min(rectangle1.x2, rectangle2.x2)
|
||
|
y2 = min(rectangle1.y2, rectangle2.y2)
|
||
|
if x2 < x1 or y2 < y1:
|
||
|
raise StitchingError("Rectangles do not overlap!")
|
||
|
return Rectangle(x1, y1, x2-x1, y2-y1)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_intersections(rectangles, overlapping_rectangles):
|
||
|
return [Cropper.get_intersection(r, overlap_r) for r, overlap_r
|
||
|
in zip(rectangles, overlapping_rectangles)]
|
||
|
|
||
|
@staticmethod
|
||
|
def get_intersection(rectangle, overlapping_rectangle):
|
||
|
x = abs(overlapping_rectangle.x - rectangle.x)
|
||
|
y = abs(overlapping_rectangle.y - rectangle.y)
|
||
|
width = overlapping_rectangle.width
|
||
|
height = overlapping_rectangle.height
|
||
|
return Rectangle(x, y, width, height)
|
||
|
|
||
|
@staticmethod
|
||
|
def crop_rectangle(img, rectangle):
|
||
|
return img[rectangle.y:rectangle.y2, rectangle.x:rectangle.x2]
|