2021-11-08 19:54:06 +08:00
|
|
|
import math
|
|
|
|
import cv2 as cv
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
class FeatureMatcher:
|
|
|
|
|
|
|
|
MATCHER_CHOICES = ('homography', 'affine')
|
|
|
|
DEFAULT_MATCHER = 'homography'
|
|
|
|
DEFAULT_RANGE_WIDTH = -1
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
matcher_type=DEFAULT_MATCHER,
|
|
|
|
range_width=DEFAULT_RANGE_WIDTH,
|
|
|
|
**kwargs):
|
|
|
|
|
|
|
|
if matcher_type == "affine":
|
2021-12-31 00:23:27 +08:00
|
|
|
"""https://docs.opencv.org/5.x/d3/dda/classcv_1_1detail_1_1AffineBestOf2NearestMatcher.html""" # noqa
|
2021-11-08 19:54:06 +08:00
|
|
|
self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs)
|
|
|
|
elif range_width == -1:
|
2021-12-31 00:23:27 +08:00
|
|
|
"""https://docs.opencv.org/5.x/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html""" # noqa
|
2022-02-02 00:56:44 +08:00
|
|
|
self.matcher = cv.detail_BestOf2NearestMatcher(**kwargs)
|
2021-11-08 19:54:06 +08:00
|
|
|
else:
|
2021-12-31 00:23:27 +08:00
|
|
|
"""https://docs.opencv.org/5.x/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html""" # noqa
|
2022-02-02 00:56:44 +08:00
|
|
|
self.matcher = cv.detail_BestOf2NearestRangeMatcher(
|
2021-11-08 19:54:06 +08:00
|
|
|
range_width, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
def match_features(self, features, *args, **kwargs):
|
|
|
|
pairwise_matches = self.matcher.apply2(features, *args, **kwargs)
|
|
|
|
self.matcher.collectGarbage()
|
|
|
|
return pairwise_matches
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def draw_matches_matrix(imgs, features, matches, conf_thresh=1,
|
|
|
|
inliers=False, **kwargs):
|
|
|
|
matches_matrix = FeatureMatcher.get_matches_matrix(matches)
|
|
|
|
for idx1, idx2 in FeatureMatcher.get_all_img_combinations(len(imgs)):
|
|
|
|
match = matches_matrix[idx1, idx2]
|
|
|
|
if match.confidence < conf_thresh:
|
|
|
|
continue
|
|
|
|
if inliers:
|
|
|
|
kwargs['matchesMask'] = match.getInliers()
|
|
|
|
yield idx1, idx2, FeatureMatcher.draw_matches(
|
|
|
|
imgs[idx1], features[idx1],
|
|
|
|
imgs[idx2], features[idx2],
|
|
|
|
match,
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def draw_matches(img1, features1, img2, features2, match1to2, **kwargs):
|
|
|
|
kwargs.setdefault('flags', cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
|
|
|
|
|
|
|
|
keypoints1 = features1.getKeypoints()
|
|
|
|
keypoints2 = features2.getKeypoints()
|
|
|
|
matches = match1to2.getMatches()
|
|
|
|
|
|
|
|
return cv.drawMatches(
|
|
|
|
img1, keypoints1, img2, keypoints2, matches, None, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_matches_matrix(pairwise_matches):
|
|
|
|
return FeatureMatcher.array_in_sqare_matrix(pairwise_matches)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_confidence_matrix(pairwise_matches):
|
|
|
|
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches)
|
|
|
|
match_confs = [[m.confidence for m in row] for row in matches_matrix]
|
|
|
|
match_conf_matrix = np.array(match_confs)
|
|
|
|
return match_conf_matrix
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def array_in_sqare_matrix(array):
|
|
|
|
matrix_dimension = int(math.sqrt(len(array)))
|
|
|
|
rows = []
|
|
|
|
for i in range(0, len(array), matrix_dimension):
|
|
|
|
rows.append(array[i:i+matrix_dimension])
|
|
|
|
return np.array(rows)
|
|
|
|
|
|
|
|
def get_all_img_combinations(number_imgs):
|
|
|
|
ii, jj = np.triu_indices(number_imgs, k=1)
|
|
|
|
for i, j in zip(ii, jj):
|
|
|
|
yield i, j
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_match_conf(match_conf, feature_detector_type):
|
|
|
|
if match_conf is None:
|
|
|
|
match_conf = \
|
|
|
|
FeatureMatcher.get_default_match_conf(feature_detector_type)
|
|
|
|
return match_conf
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_default_match_conf(feature_detector_type):
|
|
|
|
if feature_detector_type == 'orb':
|
|
|
|
return 0.3
|
|
|
|
return 0.65
|