opencv/modules/dnn/src/op_cann.cpp

330 lines
10 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "op_cann.hpp"
#include <mutex>
#include <map>
#include <cstring> // memcpy
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
#ifdef HAVE_CANN
std::shared_ptr<AclEnvGuard> AclEnvGuard::global_acl_env_ = nullptr;
std::mutex AclEnvGuard::global_acl_env_mutex_;
AclEnvGuard::AclEnvGuard()
{
CV_LOG_INFO(NULL, "Start to initialize CANN");
ACL_CHECK_RET(aclInit(NULL));
CV_LOG_INFO(NULL, "[Success] initialized CANN");
}
AclEnvGuard::~AclEnvGuard()
{
CV_LOG_INFO(NULL, "Start to finalize CANN");
ACL_CHECK_RET(aclFinalize());
CV_LOG_INFO(NULL, "[Success] finalized CANN");
}
std::shared_ptr<AclEnvGuard> AclEnvGuard::GetAclEnv()
{
std::shared_ptr<AclEnvGuard> acl_env;
std::lock_guard<std::mutex> lock(global_acl_env_mutex_);
acl_env = global_acl_env_;
if (acl_env != nullptr)
{
CV_LOG_INFO(NULL, "CANN has been initialized. Skipping...");
}
else
{
acl_env = std::make_shared<AclEnvGuard>();
global_acl_env_ = acl_env;
}
return acl_env;
}
CannConstOp::CannConstOp(const uint8_t* data, const int dtype, const std::vector<int>& shape, const std::string& name)
{
std::vector<int64_t> shape_{shape.begin(), shape.end()};
auto ge_shape = ge::Shape(shape_);
auto ge_dtype = ge::DT_FLOAT;
switch (dtype)
{
case CV_32F: break;
case CV_32S: ge_dtype = ge::DT_INT32; break;
default: CV_Error(Error::StsNotImplemented, "Unsupported data type");
}
auto size_of_type = sizeof(float);
switch (dtype)
{
case CV_32F: break;
case CV_32S: size_of_type = sizeof(int); break;
default: CV_Error(Error::StsNotImplemented, "Unsupported data type");
}
desc_ = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge_dtype);
auto ge_tensor = std::make_shared<ge::Tensor>();
ge_tensor->SetTensorDesc(*desc_);
ge_tensor->SetData(data, ge_shape.GetShapeSize() * size_of_type);
op_ = std::make_shared<ge::op::Const>(name);
op_->set_attr_value(*ge_tensor);
}
CannBackendNode::CannBackendNode(const std::shared_ptr<ge::Operator>& op)
: BackendNode(DNN_BACKEND_CANN), op_(op) { }
std::shared_ptr<ge::Operator> CannBackendNode::getOp() { return op_; }
CannBackendWrapper::CannBackendWrapper(const Mat& m)
: BackendWrapper(DNN_BACKEND_CANN, DNN_TARGET_NPU), host((Mat*)&m)
{
auto mat_shape = shape(*host);
std::vector<int64_t> shape_{mat_shape.begin(), mat_shape.end()};
auto ge_shape = ge::Shape(shape_);
desc_ = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge::DT_FLOAT);
}
void CannBackendWrapper::copyToHost()
{
CV_LOG_DEBUG(NULL, "Not implemented");
}
void CannBackendWrapper::setHostDirty()
{
CV_LOG_DEBUG(NULL, "Not implemented");
}
CannNet::~CannNet()
{
CV_LOG_INFO(NULL, "In ~CannNet, inputs = " << inputs << ", outputs = " << outputs);
if (!model_desc)
{
CV_LOG_INFO(NULL, "[Failed] Tried to deconstruct CannNet but model is not loaded");
return;
}
// free datasets: inputs, outputs
if (inputs)
{
CV_LOG_INFO(NULL, "In ~CannNet: destroy inputs");
destroyDataset(&inputs);
}
if (outputs)
{
CV_LOG_INFO(NULL, "In ~CannNet: destroy outputs");
destroyDataset(&outputs);
}
// unload model
ACL_CHECK_RET(aclmdlUnload(model_id));
// destroy model_desc
ACL_CHECK_RET(aclmdlDestroyDesc(model_desc));
model_desc = nullptr;
CV_LOG_INFO(NULL, "[Success] Unloaded model (id=" << model_id << ")");
// destroy context
if (context != nullptr)
{
ACL_CHECK_RET(aclrtDestroyContext(context));
context = nullptr;
}
// reset device
if (context == nullptr)
{
ACL_CHECK_RET(aclrtResetDevice(device_id));
}
}
bool CannNet::empty() const
{
return (model_desc == nullptr);
}
void CannNet::loadModelBuffer(std::shared_ptr<ge::ModelBufferData> modelBuffer)
{
model.clear();
model.resize(modelBuffer->length);
std::memcpy(reinterpret_cast<void*>(model.data()),
reinterpret_cast<void*>(modelBuffer->data.get()),
modelBuffer->length);
loadToDevice();
}
void CannNet::bindInputWrappers(const std::vector<Ptr<BackendWrapper>>& inputWrappers)
{
CV_Assert(inputWrappers.size() == getInputNum());
for (size_t i = 0; i < inputWrappers.size(); ++i)
{
auto wrapper = inputWrappers[i].dynamicCast<CannBackendWrapper>();
// verify size
aclmdlIODims model_dims;
ACL_CHECK_RET(aclmdlGetInputDims(model_desc, i, &model_dims));
CV_CheckEQ((int)model_dims.dimCount, wrapper->host->dims, "Dimension of input does not match with model's requirement");
for (size_t j = 0; j < model_dims.dimCount; ++j)
CV_CheckEQ((int)model_dims.dims[j], wrapper->host->size[j], "Size of input does not match with model's requirement");
input_wrappers.push_back(wrapper);
}
}
void CannNet::bindOutputWrappers(const std::vector<Ptr<BackendWrapper>>& outputWrappers)
{
CV_Assert(outputWrappers.size() == getOutputNum());
for (int i = 0; i < outputWrappers.size(); ++i)
{
auto wrapper = outputWrappers[i].dynamicCast<CannBackendWrapper>();
// verify size
aclmdlIODims model_dims;
ACL_CHECK_RET(aclmdlGetOutputDims(model_desc, i, &model_dims));
CV_CheckEQ((int)model_dims.dimCount, wrapper->host->dims, "Dimension of input does not match with model's requirement");
for (size_t j = 0; j < model_dims.dimCount; ++j)
CV_CheckEQ((int)model_dims.dims[j], wrapper->host->size[j], "Size of input does not match with model's requirement");
output_wrappers.push_back(wrapper);
}
}
void CannNet::forward()
{
// send inputs from host to device
CV_LOG_DEBUG(NULL, "DNN/CANN: start sending inputs to device");
for (size_t i = 0; i < input_wrappers.size(); ++i)
{
const void* p_host = (const void*)input_wrappers[i]->host->data;
auto db = aclmdlGetDatasetBuffer(inputs, i);
auto p_device = aclGetDataBufferAddr(db);
auto db_size = aclGetDataBufferSizeV2(db);
ACL_CHECK_RET(aclrtMemcpy(p_device, db_size, p_host, db_size, ACL_MEMCPY_HOST_TO_DEVICE));
}
CV_LOG_DEBUG(NULL, "DNN/CANN: finished sending inputs to device");
// forward
CV_LOG_DEBUG(NULL, "DNN/CANN: start network forward");
ACL_CHECK_RET(aclrtSetCurrentContext(context));
ACL_CHECK_RET(aclmdlExecute(model_id, inputs, outputs));
CV_LOG_DEBUG(NULL, "DNN/CANN: finished network forward");
// fetch ouputs from device to host
CV_LOG_DEBUG(NULL, "DNN/CANN: start fetching outputs to host");
for (size_t i = 0; i < output_wrappers.size(); ++i)
{
void* p_host = (void*)output_wrappers[i]->host->data;
auto db = aclmdlGetDatasetBuffer(outputs, i);
auto p_device = aclGetDataBufferAddr(db);
auto db_size = aclGetDataBufferSizeV2(db);
ACL_CHECK_RET(aclrtMemcpy(p_host, db_size, p_device, db_size, ACL_MEMCPY_DEVICE_TO_HOST));
}
CV_LOG_DEBUG(NULL, "DNN/CANN: finish fetching outputs to host");
}
size_t CannNet::getInputNum() const
{
return aclmdlGetNumInputs(model_desc);
}
size_t CannNet::getOutputNum() const
{
return aclmdlGetNumOutputs(model_desc);
}
void CannNet::init()
{
ACL_CHECK_RET(aclrtSetDevice(device_id));
ACL_CHECK_RET(aclrtCreateContext(&context, device_id));
}
void CannNet::loadToDevice()
{
if (model_desc != nullptr)
{
CV_LOG_INFO(NULL, "Model has been loaded to device. Skipping ...");
return;
}
CV_LOG_INFO(NULL, "Load model to NPU memory");
ACL_CHECK_RET(aclmdlLoadFromMem(reinterpret_cast<const void*>(model.data()), model.size(), &model_id));
CV_LOG_INFO(NULL, "Create model description");
model_desc = aclmdlCreateDesc();
ACL_CHECK_RET(aclmdlGetDesc(model_desc, model_id));
createInputDataset();
createOutputDataset();
}
void CannNet::createInputDataset()
{
inputs = aclmdlCreateDataset();
size_t n_inputs = aclmdlGetNumInputs(model_desc);
size_t length;
for (size_t i = 0; i < n_inputs; i++)
{
length = aclmdlGetInputSizeByIndex(model_desc, i);
CV_LOG_INFO(NULL, "length = " << length);
void* p_device = nullptr;
ACL_CHECK_RET(aclrtMalloc(&p_device, length, ACL_MEM_MALLOC_NORMAL_ONLY));
auto p_data_buffer = aclCreateDataBuffer(p_device, length);
ACL_CHECK_RET(aclmdlAddDatasetBuffer(inputs, p_data_buffer));
}
}
void CannNet::createOutputDataset()
{
outputs = aclmdlCreateDataset();
size_t n_outputs = aclmdlGetNumOutputs(model_desc);
size_t length;
for (size_t i = 0; i < n_outputs; i++)
{
length = aclmdlGetOutputSizeByIndex(model_desc, i);
void* p_device = nullptr;
ACL_CHECK_RET(aclrtMalloc(&p_device, length, ACL_MEM_MALLOC_NORMAL_ONLY));
auto p_data_buffer = aclCreateDataBuffer(p_device, length);
ACL_CHECK_RET(aclmdlAddDatasetBuffer(outputs, p_data_buffer));
}
}
void CannNet::destroyDataset(aclmdlDataset** dataset)
{
if (!dataset)
{
CV_LOG_INFO(NULL, "CANN dataset is not initialized");
return;
}
auto buffer_count = aclmdlGetDatasetNumBuffers(*dataset);
CV_LOG_INFO(NULL, "buffer_count = " << buffer_count);
for (auto i = 0; i < buffer_count; i++)
{
auto data_buffer = aclmdlGetDatasetBuffer(*dataset, i);
auto p_device = aclGetDataBufferAddr(data_buffer);
if (p_device)
{
ACL_CHECK_RET(aclrtFree(p_device)); // 107000?
}
else
{
CV_LOG_INFO(NULL, "Data buffer (i=" << i << ") from ACL dataset is invalid");
}
ACL_CHECK_RET(aclDestroyDataBuffer(data_buffer));
}
ACL_CHECK_RET(aclmdlDestroyDataset(*dataset));
*dataset = nullptr;
CV_LOG_INFO(NULL, "[Success] Destroyed dataset");
}
#endif // HAVE_CANN
}} // namespace cv::dnn