2023-02-13 22:00:20 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
/*
|
|
|
|
Test for TFLite models loading
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "npy_blob.hpp"
|
|
|
|
|
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
#include <opencv2/dnn/utils/debug_utils.hpp>
|
2023-03-21 19:50:53 +08:00
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
2023-02-13 22:00:20 +08:00
|
|
|
|
2023-02-19 00:21:07 +08:00
|
|
|
#ifdef OPENCV_TEST_DNN_TFLITE
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
2023-02-13 22:00:20 +08:00
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::dnn;
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
class Test_TFLite : public DNNTestLayer {
|
|
|
|
public:
|
|
|
|
void testModel(Net& net, const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0);
|
|
|
|
void testModel(const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0);
|
|
|
|
void testModel(const std::string& modelName, const Size& inpSize, double l1 = 0, double lInf = 0);
|
|
|
|
void testLayer(const std::string& modelName, double l1 = 0, double lInf = 0);
|
|
|
|
};
|
|
|
|
|
2023-03-21 19:50:53 +08:00
|
|
|
void testInputShapes(const Net& net, const std::vector<Mat>& inps) {
|
|
|
|
std::vector<MatShape> inLayerShapes;
|
|
|
|
std::vector<MatShape> outLayerShapes;
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
net.getLayerShapes(MatShape(), CV_32F, 0, inLayerShapes, outLayerShapes);
|
2023-03-21 19:50:53 +08:00
|
|
|
ASSERT_EQ(inLayerShapes.size(), inps.size());
|
|
|
|
|
|
|
|
for (int i = 0; i < inps.size(); ++i) {
|
|
|
|
ASSERT_EQ(inLayerShapes[i], shape(inps[i]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
void Test_TFLite::testModel(Net& net, const std::string& modelName, const Mat& input, double l1, double lInf)
|
2023-02-19 00:21:07 +08:00
|
|
|
{
|
2023-08-04 16:28:51 +08:00
|
|
|
l1 = l1 ? l1 : default_l1;
|
|
|
|
lInf = lInf ? lInf : default_lInf;
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
2023-03-21 19:50:53 +08:00
|
|
|
testInputShapes(net, {input});
|
2023-02-13 22:00:20 +08:00
|
|
|
net.setInput(input);
|
|
|
|
|
|
|
|
std::vector<String> outNames = net.getUnconnectedOutLayersNames();
|
|
|
|
|
|
|
|
std::vector<Mat> outs;
|
|
|
|
net.forward(outs, outNames);
|
|
|
|
|
|
|
|
ASSERT_EQ(outs.size(), outNames.size());
|
|
|
|
for (int i = 0; i < outNames.size(); ++i) {
|
|
|
|
Mat ref = blobFromNPY(findDataFile(format("dnn/tflite/%s_out_%s.npy", modelName.c_str(), outNames[i].c_str())));
|
2024-04-06 21:55:17 +08:00
|
|
|
// A workaround solution for the following cases due to inconsistent shape definitions.
|
|
|
|
// The details please see: https://github.com/opencv/opencv/pull/25297#issuecomment-2039081369
|
|
|
|
if (modelName == "face_landmark" || modelName == "selfie_segmentation") {
|
|
|
|
ref = ref.reshape(1, 1);
|
|
|
|
outs[i] = outs[i].reshape(1, 1);
|
|
|
|
}
|
|
|
|
normAssert(ref, outs[i], outNames[i].c_str(), l1, lInf);
|
2023-02-13 22:00:20 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
void Test_TFLite::testModel(const std::string& modelName, const Mat& input, double l1, double lInf)
|
2023-07-21 14:13:37 +08:00
|
|
|
{
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite", false));
|
|
|
|
testModel(net, modelName, input, l1, lInf);
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
void Test_TFLite::testModel(const std::string& modelName, const Size& inpSize, double l1, double lInf)
|
2023-02-19 00:21:07 +08:00
|
|
|
{
|
2023-02-13 22:00:20 +08:00
|
|
|
Mat input = imread(findDataFile("cv/shared/lena.png"));
|
|
|
|
input = blobFromImage(input, 1.0 / 255, inpSize, 0, true);
|
2023-02-19 00:21:07 +08:00
|
|
|
testModel(modelName, input, l1, lInf);
|
2023-02-13 22:00:20 +08:00
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
void Test_TFLite::testLayer(const std::string& modelName, double l1, double lInf)
|
2023-07-21 14:13:37 +08:00
|
|
|
{
|
|
|
|
Mat inp = blobFromNPY(findDataFile("dnn/tflite/" + modelName + "_inp.npy"));
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite"));
|
|
|
|
testModel(net, modelName, inp, l1, lInf);
|
|
|
|
}
|
|
|
|
|
2023-02-13 22:00:20 +08:00
|
|
|
// https://google.github.io/mediapipe/solutions/face_mesh
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, face_landmark)
|
2023-02-13 22:00:20 +08:00
|
|
|
{
|
2023-08-04 16:28:51 +08:00
|
|
|
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
|
|
|
|
double l1 = 2e-5, lInf = 2e-4;
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
|
|
|
|
{
|
|
|
|
l1 = 0.15;
|
|
|
|
lInf = 0.82;
|
|
|
|
}
|
|
|
|
testModel("face_landmark", Size(192, 192), l1, lInf);
|
2023-02-13 22:00:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// https://google.github.io/mediapipe/solutions/face_detection
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, face_detection_short_range)
|
2023-02-13 22:00:20 +08:00
|
|
|
{
|
2023-08-04 16:28:51 +08:00
|
|
|
double l1 = 0, lInf = 2e-4;
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
|
|
|
|
{
|
|
|
|
l1 = 0.04;
|
|
|
|
lInf = 0.8;
|
|
|
|
}
|
|
|
|
testModel("face_detection_short_range", Size(128, 128), l1, lInf);
|
2023-02-13 22:00:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// https://google.github.io/mediapipe/solutions/selfie_segmentation
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, selfie_segmentation)
|
2023-02-13 22:00:20 +08:00
|
|
|
{
|
2023-08-04 16:28:51 +08:00
|
|
|
double l1 = 0, lInf = 0;
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD ||
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL))
|
|
|
|
{
|
|
|
|
l1 = 0.01;
|
|
|
|
lInf = 0.48;
|
|
|
|
}
|
|
|
|
testModel("selfie_segmentation", Size(256, 256), l1, lInf);
|
2023-02-13 22:00:20 +08:00
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, max_unpooling)
|
2023-02-13 22:00:20 +08:00
|
|
|
{
|
2023-08-04 16:28:51 +08:00
|
|
|
if (backend == DNN_BACKEND_CUDA)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA);
|
|
|
|
|
2023-08-23 15:31:14 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2022010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) {
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
|
|
|
2023-02-13 22:00:20 +08:00
|
|
|
// Due Max Unpoling is a numerically unstable operation and small difference between frameworks
|
|
|
|
// might lead to positional difference of maximal elements in the tensor, this test checks
|
|
|
|
// behavior of Max Unpooling layer only.
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/hair_segmentation.tflite", false));
|
2023-08-04 16:28:51 +08:00
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
2023-02-13 22:00:20 +08:00
|
|
|
|
|
|
|
Mat input = imread(findDataFile("cv/shared/lena.png"));
|
|
|
|
cvtColor(input, input, COLOR_BGR2RGBA);
|
|
|
|
input = input.mul(Scalar(1, 1, 1, 0));
|
|
|
|
input = blobFromImage(input, 1.0 / 255);
|
2023-03-21 19:50:53 +08:00
|
|
|
testInputShapes(net, {input});
|
2023-02-13 22:00:20 +08:00
|
|
|
net.setInput(input);
|
|
|
|
|
|
|
|
std::vector<std::vector<Mat> > outs;
|
2023-09-05 23:08:28 +08:00
|
|
|
net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"});
|
2023-08-04 16:28:51 +08:00
|
|
|
|
2023-02-13 22:00:20 +08:00
|
|
|
ASSERT_EQ(outs.size(), 4);
|
|
|
|
ASSERT_EQ(outs[0].size(), 1);
|
|
|
|
ASSERT_EQ(outs[1].size(), 2);
|
|
|
|
ASSERT_EQ(outs[2].size(), 1);
|
|
|
|
ASSERT_EQ(outs[3].size(), 1);
|
|
|
|
Mat poolInp = outs[0][0];
|
|
|
|
Mat poolOut = outs[1][0];
|
|
|
|
Mat poolIds = outs[1][1];
|
|
|
|
Mat unpoolInp = outs[2][0];
|
|
|
|
Mat unpoolOut = outs[3][0];
|
|
|
|
|
|
|
|
ASSERT_EQ(poolInp.size, unpoolOut.size);
|
|
|
|
ASSERT_EQ(poolOut.size, poolIds.size);
|
|
|
|
ASSERT_EQ(poolOut.size, unpoolInp.size);
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
ASSERT_EQ(countNonZero(poolInp), poolInp.total());
|
|
|
|
|
2023-02-13 22:00:20 +08:00
|
|
|
for (int c = 0; c < 32; ++c) {
|
|
|
|
float *poolInpData = poolInp.ptr<float>(0, c);
|
|
|
|
float *poolOutData = poolOut.ptr<float>(0, c);
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
int64_t *poolIdsData = poolIds.ptr<int64_t>(0, c);
|
2023-02-13 22:00:20 +08:00
|
|
|
float *unpoolInpData = unpoolInp.ptr<float>(0, c);
|
|
|
|
float *unpoolOutData = unpoolOut.ptr<float>(0, c);
|
|
|
|
for (int y = 0; y < 64; ++y) {
|
|
|
|
for (int x = 0; x < 64; ++x) {
|
|
|
|
int maxIdx = (y * 128 + x) * 2;
|
|
|
|
std::vector<int> indices{maxIdx + 1, maxIdx + 128, maxIdx + 129};
|
|
|
|
std::string errMsg = format("Channel %d, y: %d, x: %d", c, y, x);
|
|
|
|
for (int idx : indices) {
|
|
|
|
if (poolInpData[idx] > poolInpData[maxIdx]) {
|
|
|
|
EXPECT_EQ(unpoolOutData[maxIdx], 0.0f) << errMsg;
|
|
|
|
maxIdx = idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPECT_EQ(poolInpData[maxIdx], poolOutData[y * 64 + x]) << errMsg;
|
2023-08-04 16:28:51 +08:00
|
|
|
if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
EXPECT_EQ(poolIdsData[y * 64 + x], (int64_t)maxIdx) << errMsg;
|
2023-08-04 16:28:51 +08:00
|
|
|
}
|
2023-02-13 22:00:20 +08:00
|
|
|
EXPECT_EQ(unpoolOutData[maxIdx], unpoolInpData[y * 64 + x]) << errMsg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, EfficientDet_int8) {
|
2023-09-28 21:24:43 +08:00
|
|
|
if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV &&
|
|
|
|
backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) {
|
|
|
|
throw SkipTestException("Only OpenCV, TimVX and OpenVINO targets support INT8 on CPU");
|
|
|
|
}
|
2023-04-24 18:44:10 +08:00
|
|
|
Net net = readNet(findDataFile("dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", false));
|
2023-08-04 16:28:51 +08:00
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
2023-04-24 18:44:10 +08:00
|
|
|
|
|
|
|
Mat img = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat blob = blobFromImage(img, 1.0, Size(320, 320));
|
|
|
|
|
|
|
|
net.setInput(blob);
|
|
|
|
Mat out = net.forward();
|
|
|
|
Mat_<float> ref({3, 7}, {
|
|
|
|
0, 7, 0.62890625, 0.6014542579650879, 0.13300055265426636, 0.8977657556533813, 0.292389452457428,
|
|
|
|
0, 17, 0.56640625, 0.15983937680721283, 0.35905322432518005, 0.5155506730079651, 0.9409466981887817,
|
|
|
|
0, 1, 0.5, 0.14357104897499084, 0.2240825891494751, 0.7183101177215576, 0.9140362739562988
|
|
|
|
});
|
|
|
|
normAssertDetections(ref, out, "", 0.5, 0.05, 0.1);
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
TEST_P(Test_TFLite, replicate_by_pack) {
|
|
|
|
double l1 = 0, lInf = 0;
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
l1 = 4e-4;
|
|
|
|
lInf = 2e-3;
|
|
|
|
}
|
|
|
|
testLayer("replicate_by_pack", l1, lInf);
|
2023-07-21 14:13:37 +08:00
|
|
|
}
|
|
|
|
|
2024-03-29 16:21:13 +08:00
|
|
|
TEST_P(Test_TFLite, split) {
|
|
|
|
testLayer("split");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(Test_TFLite, fully_connected) {
|
|
|
|
if (backend == DNN_BACKEND_VKCOM)
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
|
|
|
|
testLayer("fully_connected");
|
|
|
|
}
|
|
|
|
|
2023-08-04 16:28:51 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TFLite, dnnBackendsAndTargets());
|
|
|
|
|
2023-02-19 00:21:07 +08:00
|
|
|
}} // namespace
|
|
|
|
|
|
|
|
#endif // OPENCV_TEST_DNN_TFLITE
|