2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2017-06-28 16:15:22 +08:00
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
2017-06-26 18:35:51 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
static void computeShapeByReshapeMask(const MatShape &srcShape,
|
|
|
|
const MatShape &maskShape,
|
|
|
|
Range srcRange /*= Range::all()*/,
|
|
|
|
MatShape& dstShape)
|
|
|
|
{
|
|
|
|
int srcShapeSize = (int)srcShape.size();
|
|
|
|
int maskShapeSize = (int)maskShape.size();
|
|
|
|
|
|
|
|
if (srcRange == Range::all())
|
|
|
|
srcRange = Range(0, srcShapeSize);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int sz = srcRange.size();
|
|
|
|
srcRange.start = clamp(srcRange.start, srcShapeSize);
|
|
|
|
srcRange.end = srcRange.end == INT_MAX ? srcShapeSize : srcRange.start + sz;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool explicitMask = !maskShape.empty(); // All mask values are positive.
|
|
|
|
for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i)
|
|
|
|
{
|
|
|
|
explicitMask = maskShape[i] > 0;
|
|
|
|
}
|
|
|
|
// Working range of source shape is a range where area(src) == area(mask).
|
|
|
|
if (explicitMask)
|
|
|
|
{
|
|
|
|
int maskTotal = total(maskShape);
|
2017-08-28 22:37:09 +08:00
|
|
|
// Go from the end of mask until we collect required total.
|
|
|
|
bool matched = false;
|
|
|
|
for (int i = srcRange.end - 1; i >= srcRange.start; --i)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-08-28 22:37:09 +08:00
|
|
|
if (matched)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-08-28 22:37:09 +08:00
|
|
|
if (i == 0 || total(srcShape, i, srcRange.end) != maskTotal)
|
|
|
|
{
|
|
|
|
srcRange.start = i + 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
matched = total(srcShape, i, srcRange.end) == maskTotal;
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal);
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize);
|
|
|
|
int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize;
|
|
|
|
dstShape.resize(dstShapeSize);
|
|
|
|
|
|
|
|
std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin());
|
|
|
|
std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize);
|
|
|
|
|
|
|
|
int inferDim = -1;
|
|
|
|
for (int i = 0; i < maskShapeSize; i++)
|
|
|
|
{
|
|
|
|
if (maskShape[i] > 0)
|
|
|
|
{
|
|
|
|
dstShape[srcRange.start + i] = maskShape[i];
|
|
|
|
}
|
|
|
|
else if (maskShape[i] == 0)
|
|
|
|
{
|
|
|
|
if (srcRange.start + i >= srcShapeSize)
|
|
|
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i));
|
|
|
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i];
|
|
|
|
}
|
|
|
|
else if (maskShape[i] == -1)
|
|
|
|
{
|
|
|
|
if (inferDim != -1)
|
|
|
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)");
|
|
|
|
inferDim = srcRange.start + i;
|
|
|
|
dstShape[inferDim] = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1");
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t srcTotal = total(srcShape);
|
|
|
|
size_t dstTotal = total(dstShape);
|
|
|
|
|
|
|
|
if (inferDim != -1)
|
|
|
|
{
|
|
|
|
if (srcTotal % dstTotal != 0)
|
|
|
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1");
|
|
|
|
|
|
|
|
dstShape[inferDim] = (int)(srcTotal / dstTotal);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert(srcTotal == dstTotal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class ReshapeLayerImpl : public ReshapeLayer
|
|
|
|
{
|
|
|
|
public:
|
2017-09-18 18:04:43 +08:00
|
|
|
ReshapeLayerImpl(const LayerParams& params)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
int axis = params.get<int>("axis", 0);
|
|
|
|
int numAxes = params.get<int>("num_axes", -1);
|
|
|
|
CV_Assert(numAxes >= -1);
|
|
|
|
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
|
|
|
|
|
|
|
|
newShapeDesc.clear();
|
|
|
|
if (params.has("dim"))
|
|
|
|
{
|
|
|
|
const DictValue ¶mShape = params.get("dim");
|
|
|
|
int i, dims = paramShape.size();
|
|
|
|
newShapeDesc.resize(dims);
|
|
|
|
for (i = 0; i < dims; i++)
|
|
|
|
newShapeDesc[i] = paramShape.get<int>(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
outputs.clear();
|
|
|
|
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
outputs.push_back(MatShape());
|
|
|
|
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
|
|
|
}
|
|
|
|
internals = outputs;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-12-05 21:58:30 +08:00
|
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
|
|
{
|
|
|
|
std::vector<UMat> inputs;
|
|
|
|
std::vector<UMat> outputs;
|
|
|
|
|
|
|
|
inps.getUMatVector(inputs);
|
|
|
|
outs.getUMatVector(outputs);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
UMat srcBlob = inputs[i];
|
|
|
|
void *src_handle = inputs[i].handle(ACCESS_READ);
|
|
|
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
|
|
|
|
if (src_handle != dst_handle)
|
|
|
|
{
|
|
|
|
MatShape outShape = shape(outputs[i]);
|
|
|
|
UMat umat = srcBlob.reshape(1, (int)outShape.size(), &outShape[0]);
|
|
|
|
umat.copyTo(outputs[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
outs.assign(outputs);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-12-05 21:58:30 +08:00
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
Mat srcBlob = *inputs[i];
|
2017-09-18 18:04:43 +08:00
|
|
|
if (outputs[i].data != srcBlob.data)
|
|
|
|
srcBlob.reshape(1, shape(outputs[i])).copyTo(outputs[i]);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<ReshapeLayer>(new ReshapeLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|