opencv/samples/dnn/mobilenet_ssd_python.py

133 lines
6.7 KiB
Python
Raw Normal View History

# This script is used to demonstrate MobileNet-SSD network using OpenCV deep learning module.
#
# It works with model taken from https://github.com/chuanqi305/MobileNet-SSD/ that
# was trained in Caffe-SSD framework, https://github.com/weiliu89/caffe/tree/ssd.
# Model detects objects from 20 classes.
#
# Also TensorFlow model from TensorFlow object detection model zoo may be used to
# detect objects from 90 classes:
# https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
# Text graph definition must be taken from opencv_extra:
# https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/ssd_mobilenet_v1_coco.pbtxt
2017-07-15 01:47:56 +08:00
import numpy as np
import argparse
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
inWidth = 300
inHeight = 300
WHRatio = inWidth / float(inHeight)
inScaleFactor = 0.007843
meanVal = 127.5
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Script to run MobileNet-SSD object detection network '
'trained either in Caffe or TensorFlow frameworks.')
2017-07-15 01:47:56 +08:00
parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used")
parser.add_argument("--prototxt", default="MobileNetSSD_deploy.prototxt",
help='Path to text network file: '
'MobileNetSSD_deploy.prototxt for Caffe model or '
'ssd_mobilenet_v1_coco.pbtxt from opencv_extra for TensorFlow model')
parser.add_argument("--weights", default="MobileNetSSD_deploy.caffemodel",
help='Path to weights: '
'MobileNetSSD_deploy.caffemodel for Caffe model or '
'frozen_inference_graph.pb from TensorFlow.')
parser.add_argument("--num_classes", default=20, type=int,
help="Number of classes. It's 20 for Caffe model from "
"https://github.com/chuanqi305/MobileNet-SSD/ and 90 for "
"TensorFlow model from https://github.com/tensorflow/models/tree/master/research/object_detection")
parser.add_argument("--thr", default=0.2, type=float, help="confidence threshold to filter out weak detections")
2017-07-15 01:47:56 +08:00
args = parser.parse_args()
if args.num_classes == 20:
net = cv.dnn.readNetFromCaffe(args.prototxt, args.weights)
swapRB = False
classNames = { 0: 'background',
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor' }
else:
assert(args.num_classes == 90)
net = cv.dnn.readNetFromTensorflow(args.weights, args.prototxt)
swapRB = True
classNames = { 0: 'background',
1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus',
7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant',
13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat',
18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear',
24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag',
32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard',
37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove',
41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle',
46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon',
51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',
56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut',
61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed',
67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',
75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven',
80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock',
86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush' }
if args.video:
cap = cv.VideoCapture(args.video)
2017-07-15 01:47:56 +08:00
else:
cap = cv.VideoCapture(0)
2017-07-15 01:47:56 +08:00
while True:
# Capture frame-by-frame
ret, frame = cap.read()
blob = cv.dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), (meanVal, meanVal, meanVal), swapRB)
2017-07-15 01:47:56 +08:00
net.setInput(blob)
detections = net.forward()
cols = frame.shape[1]
rows = frame.shape[0]
if cols / float(rows) > WHRatio:
cropSize = (int(rows * WHRatio), rows)
else:
cropSize = (cols, int(cols / WHRatio))
y1 = int((rows - cropSize[1]) / 2)
2017-07-15 01:47:56 +08:00
y2 = y1 + cropSize[1]
x1 = int((cols - cropSize[0]) / 2)
2017-07-15 01:47:56 +08:00
x2 = x1 + cropSize[0]
frame = frame[y1:y2, x1:x2]
cols = frame.shape[1]
rows = frame.shape[0]
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args.thr:
class_id = int(detections[0, 0, i, 1])
xLeftBottom = int(detections[0, 0, i, 3] * cols)
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols)
yRightTop = int(detections[0, 0, i, 6] * rows)
cv.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
2017-07-15 01:47:56 +08:00
(0, 255, 0))
if class_id in classNames:
label = classNames[class_id] + ": " + str(confidence)
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
yLeftBottom = max(yLeftBottom, labelSize[1])
cv.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]),
(xLeftBottom + labelSize[0], yLeftBottom + baseLine),
(255, 255, 255), cv.FILLED)
cv.putText(frame, label, (xLeftBottom, yLeftBottom),
cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
2017-07-15 01:47:56 +08:00
cv.imshow("detections", frame)
if cv.waitKey(1) >= 0:
2017-07-15 01:47:56 +08:00
break