Merge pull request #13025 from alalek:move_shape_contrib
@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class shape_test(NewOpenCVTests):
|
||||
|
||||
def test_computeDistance(self):
|
||||
|
||||
a = self.get_sample('samples/data/shape_sample/1.png', cv.IMREAD_GRAYSCALE)
|
||||
b = self.get_sample('samples/data/shape_sample/2.png', cv.IMREAD_GRAYSCALE)
|
||||
|
||||
ca, _ = cv.findContours(a, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
cb, _ = cv.findContours(b, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
|
||||
hd = cv.createHausdorffDistanceExtractor()
|
||||
sd = cv.createShapeContextDistanceExtractor()
|
||||
|
||||
d1 = hd.computeDistance(ca[0], cb[0])
|
||||
d2 = sd.computeDistance(ca[0], cb[0])
|
||||
|
||||
self.assertAlmostEqual(d1, 26.4196891785, 3, "HausdorffDistanceExtractor")
|
||||
self.assertAlmostEqual(d2, 0.25804194808, 3, "ShapeContextDistanceExtractor")
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
@ -1,2 +0,0 @@
|
||||
set(the_description "Shape descriptors and matchers")
|
||||
ocv_define_module(shape opencv_core opencv_imgproc opencv_calib3d WRAP python)
|
@ -1,57 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_SHAPE_HPP
|
||||
#define OPENCV_SHAPE_HPP
|
||||
|
||||
#include "opencv2/shape/emdL1.hpp"
|
||||
#include "opencv2/shape/shape_transformer.hpp"
|
||||
#include "opencv2/shape/hist_cost.hpp"
|
||||
#include "opencv2/shape/shape_distance.hpp"
|
||||
|
||||
/**
|
||||
@defgroup shape Shape Distance and Matching
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
||||
/* End of file. */
|
@ -1,72 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_EMD_L1_HPP
|
||||
#define OPENCV_EMD_L1_HPP
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Function *
|
||||
\****************************************************************************************/
|
||||
|
||||
//! @addtogroup shape
|
||||
//! @{
|
||||
|
||||
/** @brief Computes the "minimal work" distance between two weighted point configurations base on the papers
|
||||
"EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors", by Haibin
|
||||
Ling and Kazunori Okuda; and "The Earth Mover's Distance is the Mallows Distance: Some Insights from
|
||||
Statistics", by Elizaveta Levina and Peter Bickel.
|
||||
|
||||
@param signature1 First signature, a single column floating-point matrix. Each row is the value of
|
||||
the histogram in each bin.
|
||||
@param signature2 Second signature of the same format and size as signature1.
|
||||
*/
|
||||
CV_EXPORTS float EMDL1(InputArray signature1, InputArray signature2);
|
||||
|
||||
//! @}
|
||||
|
||||
}//namespace cv
|
||||
|
||||
#endif
|
@ -1,111 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_HIST_COST_HPP
|
||||
#define OPENCV_HIST_COST_HPP
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup shape
|
||||
//! @{
|
||||
|
||||
/** @brief Abstract base class for histogram cost algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W HistogramCostExtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) = 0;
|
||||
|
||||
CV_WRAP virtual void setNDummies(int nDummies) = 0;
|
||||
CV_WRAP virtual int getNDummies() const = 0;
|
||||
|
||||
CV_WRAP virtual void setDefaultCost(float defaultCost) = 0;
|
||||
CV_WRAP virtual float getDefaultCost() const = 0;
|
||||
};
|
||||
|
||||
/** @brief A norm based cost extraction. :
|
||||
*/
|
||||
class CV_EXPORTS_W NormHistogramCostExtractor : public HistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual void setNormFlag(int flag) = 0;
|
||||
CV_WRAP virtual int getNormFlag() const = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor>
|
||||
createNormHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f);
|
||||
|
||||
/** @brief An EMD based cost extraction. :
|
||||
*/
|
||||
class CV_EXPORTS_W EMDHistogramCostExtractor : public HistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual void setNormFlag(int flag) = 0;
|
||||
CV_WRAP virtual int getNormFlag() const = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor>
|
||||
createEMDHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f);
|
||||
|
||||
/** @brief An Chi based cost extraction. :
|
||||
*/
|
||||
class CV_EXPORTS_W ChiHistogramCostExtractor : public HistogramCostExtractor
|
||||
{};
|
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies=25, float defaultCost=0.2f);
|
||||
|
||||
/** @brief An EMD-L1 based cost extraction. :
|
||||
*/
|
||||
class CV_EXPORTS_W EMDL1HistogramCostExtractor : public HistogramCostExtractor
|
||||
{};
|
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor>
|
||||
createEMDL1HistogramCostExtractor(int nDummies=25, float defaultCost=0.2f);
|
||||
|
||||
//! @}
|
||||
|
||||
} // cv
|
||||
#endif
|
@ -1,48 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD
|
||||
#error this is a compatibility header which should not be used inside the OpenCV library
|
||||
#endif
|
||||
|
||||
#include "opencv2/shape.hpp"
|
@ -1,227 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_SHAPE_SHAPE_DISTANCE_HPP
|
||||
#define OPENCV_SHAPE_SHAPE_DISTANCE_HPP
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/shape/hist_cost.hpp"
|
||||
#include "opencv2/shape/shape_transformer.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup shape
|
||||
//! @{
|
||||
|
||||
/** @example samples/cpp/shape_example.cpp
|
||||
An example using shape distance algorithm
|
||||
*/
|
||||
/** @brief Abstract base class for shape distance algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Compute the shape distance between two shapes defined by its contours.
|
||||
|
||||
@param contour1 Contour defining first shape.
|
||||
@param contour2 Contour defining second shape.
|
||||
*/
|
||||
CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0;
|
||||
};
|
||||
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
/** @brief Implementation of the Shape Context descriptor and matching algorithm
|
||||
|
||||
proposed by Belongie et al. in "Shape Matching and Object Recognition Using Shape Contexts" (PAMI
|
||||
2002). This implementation is packaged in a generic scheme, in order to allow you the
|
||||
implementation of the common variations of the original pipeline.
|
||||
*/
|
||||
class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
|
||||
pipeline.
|
||||
|
||||
@param nAngularBins The number of angular bins in the shape context descriptor.
|
||||
*/
|
||||
CV_WRAP virtual void setAngularBins(int nAngularBins) = 0;
|
||||
CV_WRAP virtual int getAngularBins() const = 0;
|
||||
|
||||
/** @brief Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
|
||||
pipeline.
|
||||
|
||||
@param nRadialBins The number of radial bins in the shape context descriptor.
|
||||
*/
|
||||
CV_WRAP virtual void setRadialBins(int nRadialBins) = 0;
|
||||
CV_WRAP virtual int getRadialBins() const = 0;
|
||||
|
||||
/** @brief Set the inner radius of the shape context descriptor.
|
||||
|
||||
@param innerRadius The value of the inner radius.
|
||||
*/
|
||||
CV_WRAP virtual void setInnerRadius(float innerRadius) = 0;
|
||||
CV_WRAP virtual float getInnerRadius() const = 0;
|
||||
|
||||
/** @brief Set the outer radius of the shape context descriptor.
|
||||
|
||||
@param outerRadius The value of the outer radius.
|
||||
*/
|
||||
CV_WRAP virtual void setOuterRadius(float outerRadius) = 0;
|
||||
CV_WRAP virtual float getOuterRadius() const = 0;
|
||||
|
||||
CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0;
|
||||
CV_WRAP virtual bool getRotationInvariant() const = 0;
|
||||
|
||||
/** @brief Set the weight of the shape context distance in the final value of the shape distance. The shape
|
||||
context distance between two shapes is defined as the symmetric sum of shape context matching costs
|
||||
over best matching points. The final value of the shape distance is a user-defined linear
|
||||
combination of the shape context distance, an image appearance distance, and a bending energy.
|
||||
|
||||
@param shapeContextWeight The weight of the shape context distance in the final distance value.
|
||||
*/
|
||||
CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0;
|
||||
CV_WRAP virtual float getShapeContextWeight() const = 0;
|
||||
|
||||
/** @brief Set the weight of the Image Appearance cost in the final value of the shape distance. The image
|
||||
appearance cost is defined as the sum of squared brightness differences in Gaussian windows around
|
||||
corresponding image points. The final value of the shape distance is a user-defined linear
|
||||
combination of the shape context distance, an image appearance distance, and a bending energy. If
|
||||
this value is set to a number different from 0, is mandatory to set the images that correspond to
|
||||
each shape.
|
||||
|
||||
@param imageAppearanceWeight The weight of the appearance cost in the final distance value.
|
||||
*/
|
||||
CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0;
|
||||
CV_WRAP virtual float getImageAppearanceWeight() const = 0;
|
||||
|
||||
/** @brief Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
|
||||
definition depends on what transformation is being used to align the shapes. The final value of the
|
||||
shape distance is a user-defined linear combination of the shape context distance, an image
|
||||
appearance distance, and a bending energy.
|
||||
|
||||
@param bendingEnergyWeight The weight of the Bending Energy in the final distance value.
|
||||
*/
|
||||
CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0;
|
||||
CV_WRAP virtual float getBendingEnergyWeight() const = 0;
|
||||
|
||||
/** @brief Set the images that correspond to each shape. This images are used in the calculation of the Image
|
||||
Appearance cost.
|
||||
|
||||
@param image1 Image corresponding to the shape defined by contours1.
|
||||
@param image2 Image corresponding to the shape defined by contours2.
|
||||
*/
|
||||
CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0;
|
||||
CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0;
|
||||
|
||||
CV_WRAP virtual void setIterations(int iterations) = 0;
|
||||
CV_WRAP virtual int getIterations() const = 0;
|
||||
|
||||
/** @brief Set the algorithm used for building the shape context descriptor cost matrix.
|
||||
|
||||
@param comparer Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost
|
||||
matrix between descriptors.
|
||||
*/
|
||||
CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0;
|
||||
CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0;
|
||||
|
||||
/** @brief Set the value of the standard deviation for the Gaussian window for the image appearance cost.
|
||||
|
||||
@param sigma Standard Deviation.
|
||||
*/
|
||||
CV_WRAP virtual void setStdDev(float sigma) = 0;
|
||||
CV_WRAP virtual float getStdDev() const = 0;
|
||||
|
||||
/** @brief Set the algorithm used for aligning the shapes.
|
||||
|
||||
@param transformer Smart pointer to a ShapeTransformer, an algorithm that defines the aligning
|
||||
transformation.
|
||||
*/
|
||||
CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0;
|
||||
CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0;
|
||||
};
|
||||
|
||||
/* Complete constructor */
|
||||
CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor>
|
||||
createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4,
|
||||
float innerRadius=0.2f, float outerRadius=2, int iterations=3,
|
||||
const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(),
|
||||
const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer());
|
||||
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
/** @brief A simple Hausdorff distance measure between shapes defined by contours
|
||||
|
||||
according to the paper "Comparing Images using the Hausdorff distance." by D.P. Huttenlocher, G.A.
|
||||
Klanderman, and W.J. Rucklidge. (PAMI 1993). :
|
||||
*/
|
||||
class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
|
||||
|
||||
@param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance
|
||||
(NORM_L1, NORM_L2).
|
||||
*/
|
||||
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0;
|
||||
CV_WRAP virtual int getDistanceFlag() const = 0;
|
||||
|
||||
/** @brief This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
|
||||
the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare
|
||||
shapes.
|
||||
|
||||
@param rankProportion fractional value (between 0 and 1).
|
||||
*/
|
||||
CV_WRAP virtual void setRankProportion(float rankProportion) = 0;
|
||||
CV_WRAP virtual float getRankProportion() const = 0;
|
||||
};
|
||||
|
||||
/* Constructor */
|
||||
CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6f);
|
||||
|
||||
//! @}
|
||||
|
||||
} // cv
|
||||
#endif
|
@ -1,132 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_SHAPE_SHAPE_TRANSFORM_HPP
|
||||
#define OPENCV_SHAPE_SHAPE_TRANSFORM_HPP
|
||||
#include <vector>
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup shape
|
||||
//! @{
|
||||
|
||||
/** @brief Abstract base class for shape transformation algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W ShapeTransformer : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Estimate the transformation parameters of the current transformer algorithm, based on point matches.
|
||||
|
||||
@param transformingShape Contour defining first shape.
|
||||
@param targetShape Contour defining second shape (Target).
|
||||
@param matches Standard vector of Matches between points.
|
||||
*/
|
||||
CV_WRAP virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape,
|
||||
std::vector<DMatch>& matches) = 0;
|
||||
|
||||
/** @brief Apply a transformation, given a pre-estimated transformation parameters.
|
||||
|
||||
@param input Contour (set of points) to apply the transformation.
|
||||
@param output Output contour.
|
||||
*/
|
||||
CV_WRAP virtual float applyTransformation(InputArray input, OutputArray output=noArray()) = 0;
|
||||
|
||||
/** @brief Apply a transformation, given a pre-estimated transformation parameters, to an Image.
|
||||
|
||||
@param transformingImage Input image.
|
||||
@param output Output image.
|
||||
@param flags Image interpolation method.
|
||||
@param borderMode border style.
|
||||
@param borderValue border value.
|
||||
*/
|
||||
CV_WRAP virtual void warpImage(InputArray transformingImage, OutputArray output,
|
||||
int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar()) const = 0;
|
||||
};
|
||||
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
|
||||
/** @brief Definition of the transformation
|
||||
|
||||
occupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition of Deformations", by
|
||||
F.L. Bookstein (PAMI 1989). :
|
||||
*/
|
||||
class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer
|
||||
{
|
||||
public:
|
||||
/** @brief Set the regularization parameter for relaxing the exact interpolation requirements of the TPS
|
||||
algorithm.
|
||||
|
||||
@param beta value of the regularization parameter.
|
||||
*/
|
||||
CV_WRAP virtual void setRegularizationParameter(double beta) = 0;
|
||||
CV_WRAP virtual double getRegularizationParameter() const = 0;
|
||||
};
|
||||
|
||||
/** Complete constructor */
|
||||
CV_EXPORTS_W Ptr<ThinPlateSplineShapeTransformer>
|
||||
createThinPlateSplineShapeTransformer(double regularizationParameter=0);
|
||||
|
||||
/***********************************************************************************/
|
||||
/***********************************************************************************/
|
||||
|
||||
/** @brief Wrapper class for the OpenCV Affine Transformation algorithm. :
|
||||
*/
|
||||
class CV_EXPORTS_W AffineTransformer : public ShapeTransformer
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual void setFullAffine(bool fullAffine) = 0;
|
||||
CV_WRAP virtual bool getFullAffine() const = 0;
|
||||
};
|
||||
|
||||
/** Complete constructor */
|
||||
CV_EXPORTS_W Ptr<AffineTransformer> createAffineTransformer(bool fullAffine);
|
||||
|
||||
//! @}
|
||||
|
||||
} // cv
|
||||
#endif
|
@ -1,279 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class AffineTransformerImpl : public AffineTransformer
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
AffineTransformerImpl()
|
||||
{
|
||||
fullAffine = true;
|
||||
name_ = "ShapeTransformer.AFF";
|
||||
transformCost = 0;
|
||||
}
|
||||
|
||||
AffineTransformerImpl(bool _fullAffine)
|
||||
{
|
||||
fullAffine = _fullAffine;
|
||||
name_ = "ShapeTransformer.AFF";
|
||||
transformCost = 0;
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~AffineTransformerImpl()
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches) CV_OVERRIDE;
|
||||
virtual float applyTransformation(InputArray input, OutputArray output=noArray()) CV_OVERRIDE;
|
||||
virtual void warpImage(InputArray transformingImage, OutputArray output,
|
||||
int flags, int borderMode, const Scalar& borderValue) const CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
virtual void setFullAffine(bool _fullAffine) CV_OVERRIDE {fullAffine=_fullAffine;}
|
||||
virtual bool getFullAffine() const CV_OVERRIDE {return fullAffine;}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "affine_type" << int(fullAffine);
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
fullAffine = int(fn["affine_type"])?true:false;
|
||||
}
|
||||
|
||||
private:
|
||||
bool fullAffine;
|
||||
Mat affineMat;
|
||||
float transformCost;
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
};
|
||||
|
||||
void AffineTransformerImpl::warpImage(InputArray transformingImage, OutputArray output,
|
||||
int flags, int borderMode, const Scalar& borderValue) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert(!affineMat.empty());
|
||||
warpAffine(transformingImage, output, affineMat, transformingImage.getMat().size(), flags, borderMode, borderValue);
|
||||
}
|
||||
|
||||
|
||||
static Mat _localAffineEstimate(const std::vector<Point2f>& shape1, const std::vector<Point2f>& shape2,
|
||||
bool fullAfine)
|
||||
{
|
||||
Mat out(2,3,CV_32F);
|
||||
int siz=2*(int)shape1.size();
|
||||
|
||||
if (fullAfine)
|
||||
{
|
||||
Mat matM(siz, 6, CV_32F);
|
||||
Mat matP(siz,1,CV_32F);
|
||||
int contPt=0;
|
||||
for (int ii=0; ii<siz; ii++)
|
||||
{
|
||||
Mat therow = Mat::zeros(1,6,CV_32F);
|
||||
if (ii%2==0)
|
||||
{
|
||||
therow.at<float>(0,0)=shape1[contPt].x;
|
||||
therow.at<float>(0,1)=shape1[contPt].y;
|
||||
therow.at<float>(0,2)=1;
|
||||
therow.row(0).copyTo(matM.row(ii));
|
||||
matP.at<float>(ii,0) = shape2[contPt].x;
|
||||
}
|
||||
else
|
||||
{
|
||||
therow.at<float>(0,3)=shape1[contPt].x;
|
||||
therow.at<float>(0,4)=shape1[contPt].y;
|
||||
therow.at<float>(0,5)=1;
|
||||
therow.row(0).copyTo(matM.row(ii));
|
||||
matP.at<float>(ii,0) = shape2[contPt].y;
|
||||
contPt++;
|
||||
}
|
||||
}
|
||||
Mat sol;
|
||||
solve(matM, matP, sol, DECOMP_SVD);
|
||||
out = sol.reshape(0,2);
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat matM(siz, 4, CV_32F);
|
||||
Mat matP(siz,1,CV_32F);
|
||||
int contPt=0;
|
||||
for (int ii=0; ii<siz; ii++)
|
||||
{
|
||||
Mat therow = Mat::zeros(1,4,CV_32F);
|
||||
if (ii%2==0)
|
||||
{
|
||||
therow.at<float>(0,0)=shape1[contPt].x;
|
||||
therow.at<float>(0,1)=shape1[contPt].y;
|
||||
therow.at<float>(0,2)=1;
|
||||
therow.row(0).copyTo(matM.row(ii));
|
||||
matP.at<float>(ii,0) = shape2[contPt].x;
|
||||
}
|
||||
else
|
||||
{
|
||||
therow.at<float>(0,0)=shape1[contPt].y;
|
||||
therow.at<float>(0,1)=-shape1[contPt].x;
|
||||
therow.at<float>(0,3)=1;
|
||||
therow.row(0).copyTo(matM.row(ii));
|
||||
matP.at<float>(ii,0) = shape2[contPt].y;
|
||||
contPt++;
|
||||
}
|
||||
}
|
||||
Mat sol;
|
||||
solve(matM, matP, sol, DECOMP_SVD);
|
||||
out.at<float>(0,0)=sol.at<float>(0,0);
|
||||
out.at<float>(0,1)=sol.at<float>(1,0);
|
||||
out.at<float>(0,2)=sol.at<float>(2,0);
|
||||
out.at<float>(1,0)=-sol.at<float>(1,0);
|
||||
out.at<float>(1,1)=sol.at<float>(0,0);
|
||||
out.at<float>(1,2)=sol.at<float>(3,0);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void AffineTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, std::vector<DMatch>& _matches)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat pts1 = _pts1.getMat();
|
||||
Mat pts2 = _pts2.getMat();
|
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0));
|
||||
CV_Assert(_matches.size()>1);
|
||||
|
||||
if (pts1.type() != CV_32F)
|
||||
pts1.convertTo(pts1, CV_32F);
|
||||
if (pts2.type() != CV_32F)
|
||||
pts2.convertTo(pts2, CV_32F);
|
||||
|
||||
// Use only valid matchings //
|
||||
std::vector<DMatch> matches;
|
||||
for (size_t i=0; i<_matches.size(); i++)
|
||||
{
|
||||
if (_matches[i].queryIdx<pts1.cols &&
|
||||
_matches[i].trainIdx<pts2.cols)
|
||||
{
|
||||
matches.push_back(_matches[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Organizing the correspondent points in vector style //
|
||||
std::vector<Point2f> shape1; // transforming shape
|
||||
std::vector<Point2f> shape2; // target shape
|
||||
for (size_t i=0; i<matches.size(); i++)
|
||||
{
|
||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx);
|
||||
shape1.push_back(pt1);
|
||||
|
||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx);
|
||||
shape2.push_back(pt2);
|
||||
}
|
||||
|
||||
Mat affine;
|
||||
if (fullAffine)
|
||||
{
|
||||
estimateAffine2D(shape1, shape2).convertTo(affine, CV_32F);
|
||||
} else
|
||||
{
|
||||
estimateAffinePartial2D(shape1, shape2).convertTo(affine, CV_32F);
|
||||
}
|
||||
|
||||
if (affine.empty())
|
||||
//In case there is not good solution, just give a LLS based one
|
||||
affine = _localAffineEstimate(shape1, shape2, fullAffine);
|
||||
|
||||
affineMat = affine;
|
||||
}
|
||||
|
||||
float AffineTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat pts1 = inPts.getMat();
|
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0));
|
||||
|
||||
//Apply transformation in the complete set of points
|
||||
Mat fAffine;
|
||||
transform(pts1, fAffine, affineMat);
|
||||
|
||||
// Ensambling output //
|
||||
if (outPts.needed())
|
||||
{
|
||||
outPts.create(1,fAffine.cols, CV_32FC2);
|
||||
Mat outMat = outPts.getMat();
|
||||
for (int i=0; i<fAffine.cols; i++)
|
||||
outMat.at<Point2f>(0,i)=fAffine.at<Point2f>(0,i);
|
||||
}
|
||||
|
||||
// Updating Transform Cost //
|
||||
Mat Af(2, 2, CV_32F);
|
||||
Af.at<float>(0,0)=affineMat.at<float>(0,0);
|
||||
Af.at<float>(0,1)=affineMat.at<float>(1,0);
|
||||
Af.at<float>(1,0)=affineMat.at<float>(0,1);
|
||||
Af.at<float>(1,1)=affineMat.at<float>(1,1);
|
||||
SVD mysvd(Af, SVD::NO_UV);
|
||||
Mat singVals=mysvd.w;
|
||||
transformCost=std::log((singVals.at<float>(0,0)+FLT_MIN)/(singVals.at<float>(1,0)+FLT_MIN));
|
||||
|
||||
return transformCost;
|
||||
}
|
||||
|
||||
Ptr <AffineTransformer> createAffineTransformer(bool fullAffine)
|
||||
{
|
||||
return Ptr<AffineTransformer>( new AffineTransformerImpl(fullAffine) );
|
||||
}
|
||||
|
||||
} // cv
|
@ -1,797 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
* Implementation of an optimized EMD for histograms based in
|
||||
* the papers "EMD-L1: An efficient and Robust Algorithm
|
||||
* for comparing histogram-based descriptors", by Haibin Ling and
|
||||
* Kazunori Okuda; and "The Earth Mover's Distance is the Mallows
|
||||
* Distance: Some Insights from Statistics", by Elizaveta Levina and
|
||||
* Peter Bickel, based on HAIBIN LING AND KAZUNORI OKADA implementation.
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "emdL1_def.hpp"
|
||||
#include <limits>
|
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Class *
|
||||
\****************************************************************************************/
|
||||
|
||||
float EmdL1::getEMDL1(cv::Mat &sig1, cv::Mat &sig2)
|
||||
{
|
||||
// Initialization
|
||||
CV_Assert((sig1.rows==sig2.rows) && (sig1.cols==sig2.cols) && (!sig1.empty()) && (!sig2.empty()));
|
||||
if(!initBaseTrees(sig1.rows, 1))
|
||||
return -1;
|
||||
|
||||
float *H1=new float[sig1.rows], *H2 = new float[sig2.rows];
|
||||
for (int ii=0; ii<sig1.rows; ii++)
|
||||
{
|
||||
H1[ii]=sig1.at<float>(ii,0);
|
||||
H2[ii]=sig2.at<float>(ii,0);
|
||||
}
|
||||
|
||||
fillBaseTrees(H1,H2); // Initialize histograms
|
||||
greedySolution(); // Construct an initial Basic Feasible solution
|
||||
initBVTree(); // Initialize BVTree
|
||||
|
||||
// Iteration
|
||||
bool bOptimal = false;
|
||||
m_nItr = 0;
|
||||
while(!bOptimal && m_nItr<nMaxIt)
|
||||
{
|
||||
// Derive U=(u_ij) for row i and column j
|
||||
if(m_nItr==0) updateSubtree(m_pRoot);
|
||||
else updateSubtree(m_pEnter->pChild);
|
||||
|
||||
// Optimality test
|
||||
bOptimal = isOptimal();
|
||||
|
||||
// Find new solution
|
||||
if(!bOptimal)
|
||||
findNewSolution();
|
||||
++m_nItr;
|
||||
}
|
||||
delete [] H1;
|
||||
delete [] H2;
|
||||
// Output the total flow
|
||||
return compuTotalFlow();
|
||||
}
|
||||
|
||||
void EmdL1::setMaxIteration(int _nMaxIt)
|
||||
{
|
||||
nMaxIt=_nMaxIt;
|
||||
}
|
||||
|
||||
//-- SubFunctions called in the EMD algorithm
|
||||
bool EmdL1::initBaseTrees(int n1, int n2, int n3)
|
||||
{
|
||||
if(binsDim1==n1 && binsDim2==n2 && binsDim3==n3)
|
||||
return true;
|
||||
binsDim1 = n1;
|
||||
binsDim2 = n2;
|
||||
binsDim3 = n3;
|
||||
if(binsDim1==0 || binsDim2==0) dimension = 0;
|
||||
else dimension = (binsDim3==0)?2:3;
|
||||
|
||||
if(dimension==2)
|
||||
{
|
||||
m_Nodes.resize(binsDim1);
|
||||
m_EdgesUp.resize(binsDim1);
|
||||
m_EdgesRight.resize(binsDim1);
|
||||
for(int i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
m_Nodes[i1].resize(binsDim2);
|
||||
m_EdgesUp[i1].resize(binsDim2);
|
||||
m_EdgesRight[i1].resize(binsDim2);
|
||||
}
|
||||
m_NBVEdges.resize(binsDim1*binsDim2*4+2);
|
||||
m_auxQueue.resize(binsDim1*binsDim2+2);
|
||||
m_fromLoop.resize(binsDim1*binsDim2+2);
|
||||
m_toLoop.resize(binsDim1*binsDim2+2);
|
||||
}
|
||||
else if(dimension==3)
|
||||
{
|
||||
m_3dNodes.resize(binsDim1);
|
||||
m_3dEdgesUp.resize(binsDim1);
|
||||
m_3dEdgesRight.resize(binsDim1);
|
||||
m_3dEdgesDeep.resize(binsDim1);
|
||||
for(int i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
m_3dNodes[i1].resize(binsDim2);
|
||||
m_3dEdgesUp[i1].resize(binsDim2);
|
||||
m_3dEdgesRight[i1].resize(binsDim2);
|
||||
m_3dEdgesDeep[i1].resize(binsDim2);
|
||||
for(int i2=0; i2<binsDim2; i2++)
|
||||
{
|
||||
m_3dNodes[i1][i2].resize(binsDim3);
|
||||
m_3dEdgesUp[i1][i2].resize(binsDim3);
|
||||
m_3dEdgesRight[i1][i2].resize(binsDim3);
|
||||
m_3dEdgesDeep[i1][i2].resize(binsDim3);
|
||||
}
|
||||
}
|
||||
m_NBVEdges.resize(binsDim1*binsDim2*binsDim3*6+4);
|
||||
m_auxQueue.resize(binsDim1*binsDim2*binsDim3+4);
|
||||
m_fromLoop.resize(binsDim1*binsDim2*binsDim3+4);
|
||||
m_toLoop.resize(binsDim1*binsDim2*binsDim3+2);
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool EmdL1::fillBaseTrees(float *H1, float *H2)
|
||||
{
|
||||
//- Set global counters
|
||||
m_pRoot = NULL;
|
||||
// Graph initialization
|
||||
float *p1 = H1;
|
||||
float *p2 = H2;
|
||||
if(dimension==2)
|
||||
{
|
||||
for(int c=0; c<binsDim2; c++)
|
||||
{
|
||||
for(int r=0; r<binsDim1; r++)
|
||||
{
|
||||
//- initialize nodes and links
|
||||
m_Nodes[r][c].pos[0] = r;
|
||||
m_Nodes[r][c].pos[1] = c;
|
||||
m_Nodes[r][c].d = *(p1++)-*(p2++);
|
||||
m_Nodes[r][c].pParent = NULL;
|
||||
m_Nodes[r][c].pChild = NULL;
|
||||
m_Nodes[r][c].iLevel = -1;
|
||||
|
||||
//- initialize edges
|
||||
// to the right
|
||||
m_EdgesRight[r][c].pParent = &(m_Nodes[r][c]);
|
||||
m_EdgesRight[r][c].pChild = &(m_Nodes[r][(c+1)%binsDim2]);
|
||||
m_EdgesRight[r][c].flow = 0;
|
||||
m_EdgesRight[r][c].iDir = 1;
|
||||
m_EdgesRight[r][c].pNxt = NULL;
|
||||
|
||||
// to the upward
|
||||
m_EdgesUp[r][c].pParent = &(m_Nodes[r][c]);
|
||||
m_EdgesUp[r][c].pChild = &(m_Nodes[(r+1)%binsDim1][c]);
|
||||
m_EdgesUp[r][c].flow = 0;
|
||||
m_EdgesUp[r][c].iDir = 1;
|
||||
m_EdgesUp[r][c].pNxt = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if(dimension==3)
|
||||
{
|
||||
for(int z=0; z<binsDim3; z++)
|
||||
{
|
||||
for(int c=0; c<binsDim2; c++)
|
||||
{
|
||||
for(int r=0; r<binsDim1; r++)
|
||||
{
|
||||
//- initialize nodes and edges
|
||||
m_3dNodes[r][c][z].pos[0] = r;
|
||||
m_3dNodes[r][c][z].pos[1] = c;
|
||||
m_3dNodes[r][c][z].pos[2] = z;
|
||||
m_3dNodes[r][c][z].d = *(p1++)-*(p2++);
|
||||
m_3dNodes[r][c][z].pParent = NULL;
|
||||
m_3dNodes[r][c][z].pChild = NULL;
|
||||
m_3dNodes[r][c][z].iLevel = -1;
|
||||
|
||||
//- initialize edges
|
||||
// to the upward
|
||||
m_3dEdgesUp[r][c][z].pParent= &(m_3dNodes[r][c][z]);
|
||||
m_3dEdgesUp[r][c][z].pChild = &(m_3dNodes[(r+1)%binsDim1][c][z]);
|
||||
m_3dEdgesUp[r][c][z].flow = 0;
|
||||
m_3dEdgesUp[r][c][z].iDir = 1;
|
||||
m_3dEdgesUp[r][c][z].pNxt = NULL;
|
||||
|
||||
// to the right
|
||||
m_3dEdgesRight[r][c][z].pParent = &(m_3dNodes[r][c][z]);
|
||||
m_3dEdgesRight[r][c][z].pChild = &(m_3dNodes[r][(c+1)%binsDim2][z]);
|
||||
m_3dEdgesRight[r][c][z].flow = 0;
|
||||
m_3dEdgesRight[r][c][z].iDir = 1;
|
||||
m_3dEdgesRight[r][c][z].pNxt = NULL;
|
||||
|
||||
// to the deep
|
||||
m_3dEdgesDeep[r][c][z].pParent = &(m_3dNodes[r][c][z]);
|
||||
m_3dEdgesDeep[r][c][z].pChild = &(m_3dNodes[r][c])[(z+1)%binsDim3];
|
||||
m_3dEdgesDeep[r][c][z].flow = 0;
|
||||
m_3dEdgesDeep[r][c][z].iDir = 1;
|
||||
m_3dEdgesDeep[r][c][z].pNxt = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool EmdL1::greedySolution()
|
||||
{
|
||||
return dimension==2?greedySolution2():greedySolution3();
|
||||
}
|
||||
|
||||
bool EmdL1::greedySolution2()
|
||||
{
|
||||
//- Prepare auxiliary array, D=H1-H2
|
||||
int c,r;
|
||||
floatArray2D D(binsDim1);
|
||||
for(r=0; r<binsDim1; r++)
|
||||
{
|
||||
D[r].resize(binsDim2);
|
||||
for(c=0; c<binsDim2; c++) D[r][c] = m_Nodes[r][c].d;
|
||||
}
|
||||
// compute integrated values along each dimension
|
||||
std::vector<float> d2s(binsDim2);
|
||||
d2s[0] = 0;
|
||||
for(c=0; c<binsDim2-1; c++)
|
||||
{
|
||||
d2s[c+1] = d2s[c];
|
||||
for(r=0; r<binsDim1; r++) d2s[c+1]-= D[r][c];
|
||||
}
|
||||
|
||||
std::vector<float> d1s(binsDim1);
|
||||
d1s[0] = 0;
|
||||
for(r=0; r<binsDim1-1; r++)
|
||||
{
|
||||
d1s[r+1] = d1s[r];
|
||||
for(c=0; c<binsDim2; c++) d1s[r+1]-= D[r][c];
|
||||
}
|
||||
|
||||
//- Greedy algorithm for initial solution
|
||||
cvPEmdEdge pBV;
|
||||
float dFlow;
|
||||
bool bUpward = false;
|
||||
nNBV = 0; // number of NON-BV edges
|
||||
|
||||
for(c=0; c<binsDim2-1; c++)
|
||||
for(r=0; r<binsDim1; r++)
|
||||
{
|
||||
dFlow = D[r][c];
|
||||
bUpward = (r<binsDim1-1) && (fabs(dFlow+d2s[c+1]) > fabs(dFlow+d1s[r+1])); // Move upward or right
|
||||
|
||||
// modify basic variables, record BV and related values
|
||||
if(bUpward)
|
||||
{
|
||||
// move to up
|
||||
pBV = &(m_EdgesUp[r][c]);
|
||||
m_NBVEdges[nNBV++] = &(m_EdgesRight[r][c]);
|
||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
||||
d1s[r+1] += dFlow; // auxiliary matrix maintenance
|
||||
}
|
||||
else
|
||||
{
|
||||
// move to right, no other choice
|
||||
pBV = &(m_EdgesRight[r][c]);
|
||||
if(r<binsDim1-1)
|
||||
m_NBVEdges[nNBV++] = &(m_EdgesUp[r][c]);
|
||||
|
||||
D[r][c+1] += dFlow; // auxiliary matrix maintenance
|
||||
d2s[c+1] += dFlow; // auxiliary matrix maintenance
|
||||
}
|
||||
pBV->pParent->pChild = pBV;
|
||||
pBV->flow = fabs(dFlow);
|
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
}
|
||||
|
||||
//- rightmost column, no choice but move upward
|
||||
c = binsDim2-1;
|
||||
for(r=0; r<binsDim1-1; r++)
|
||||
{
|
||||
dFlow = D[r][c];
|
||||
pBV = &(m_EdgesUp[r][c]);
|
||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
||||
pBV->pParent->pChild= pBV;
|
||||
pBV->flow = fabs(dFlow);
|
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool EmdL1::greedySolution3()
|
||||
{
|
||||
//- Prepare auxiliary array, D=H1-H2
|
||||
int i1,i2,i3;
|
||||
std::vector<floatArray2D> D(binsDim1);
|
||||
for(i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
D[i1].resize(binsDim2);
|
||||
for(i2=0; i2<binsDim2; i2++)
|
||||
{
|
||||
D[i1][i2].resize(binsDim3);
|
||||
for(i3=0; i3<binsDim3; i3++)
|
||||
D[i1][i2][i3] = m_3dNodes[i1][i2][i3].d;
|
||||
}
|
||||
}
|
||||
|
||||
// compute integrated values along each dimension
|
||||
std::vector<float> d1s(binsDim1);
|
||||
d1s[0] = 0;
|
||||
for(i1=0; i1<binsDim1-1; i1++)
|
||||
{
|
||||
d1s[i1+1] = d1s[i1];
|
||||
for(i2=0; i2<binsDim2; i2++)
|
||||
{
|
||||
for(i3=0; i3<binsDim3; i3++)
|
||||
d1s[i1+1] -= D[i1][i2][i3];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> d2s(binsDim2);
|
||||
d2s[0] = 0;
|
||||
for(i2=0; i2<binsDim2-1; i2++)
|
||||
{
|
||||
d2s[i2+1] = d2s[i2];
|
||||
for(i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
for(i3=0; i3<binsDim3; i3++)
|
||||
d2s[i2+1] -= D[i1][i2][i3];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> d3s(binsDim3);
|
||||
d3s[0] = 0;
|
||||
for(i3=0; i3<binsDim3-1; i3++)
|
||||
{
|
||||
d3s[i3+1] = d3s[i3];
|
||||
for(i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
for(i2=0; i2<binsDim2; i2++)
|
||||
d3s[i3+1] -= D[i1][i2][i3];
|
||||
}
|
||||
}
|
||||
|
||||
//- Greedy algorithm for initial solution
|
||||
cvPEmdEdge pBV;
|
||||
float dFlow, f1,f2,f3;
|
||||
nNBV = 0; // number of NON-BV edges
|
||||
for(i3=0; i3<binsDim3; i3++)
|
||||
{
|
||||
for(i2=0; i2<binsDim2; i2++)
|
||||
{
|
||||
for(i1=0; i1<binsDim1; i1++)
|
||||
{
|
||||
if(i3==binsDim3-1 && i2==binsDim2-1 && i1==binsDim1-1) break;
|
||||
|
||||
//- determine which direction to move, either right or upward
|
||||
dFlow = D[i1][i2][i3];
|
||||
f1 = (i1<(binsDim1-1))?fabs(dFlow+d1s[i1+1]):std::numeric_limits<float>::max();
|
||||
f2 = (i2<(binsDim2-1))?fabs(dFlow+d2s[i2+1]):std::numeric_limits<float>::max();
|
||||
f3 = (i3<(binsDim3-1))?fabs(dFlow+d3s[i3+1]):std::numeric_limits<float>::max();
|
||||
|
||||
if(f1<f2 && f1<f3)
|
||||
{
|
||||
pBV = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1+1][i2][i3] += dFlow; // maintain auxiliary matrix
|
||||
d1s[i1+1] += dFlow;
|
||||
}
|
||||
else if(f2<f3)
|
||||
{
|
||||
pBV = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1][i2+1][i3] += dFlow; // maintain auxiliary matrix
|
||||
d2s[i2+1] += dFlow;
|
||||
}
|
||||
else
|
||||
{
|
||||
pBV = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
D[i1][i2][i3+1] += dFlow; // maintain auxiliary matrix
|
||||
d3s[i3+1] += dFlow;
|
||||
}
|
||||
|
||||
pBV->flow = fabs(dFlow);
|
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
pBV->pParent->pChild= pBV;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void EmdL1::initBVTree()
|
||||
{
|
||||
// initialize BVTree from the initial BF solution
|
||||
//- Using the center of the graph as the root
|
||||
int r = (int)(0.5*binsDim1-.5);
|
||||
int c = (int)(0.5*binsDim2-.5);
|
||||
int z = (int)(0.5*binsDim3-.5);
|
||||
m_pRoot = dimension==2 ? &(m_Nodes[r][c]) : &(m_3dNodes[r][c][z]);
|
||||
m_pRoot->u = 0;
|
||||
m_pRoot->iLevel = 0;
|
||||
m_pRoot->pParent= NULL;
|
||||
m_pRoot->pPEdge = NULL;
|
||||
|
||||
//- Prepare a queue
|
||||
m_auxQueue[0] = m_pRoot;
|
||||
int nQueue = 1; // length of queue
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
//- Recursively build subtrees
|
||||
cvPEmdEdge pCurE=NULL, pNxtE=NULL;
|
||||
cvPEmdNode pCurN=NULL, pNxtN=NULL;
|
||||
int nBin = binsDim1*binsDim2*std::max(binsDim3,1);
|
||||
while(iQHead<nQueue && nQueue<nBin)
|
||||
{
|
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
r = pCurN->pos[0];
|
||||
c = pCurN->pos[1];
|
||||
z = pCurN->pos[2];
|
||||
|
||||
// check connection from itself
|
||||
pCurE = pCurN->pChild; // the initial child from initial solution
|
||||
if(pCurE)
|
||||
{
|
||||
pNxtN = pCurE->pChild;
|
||||
pNxtN->pParent = pCurN;
|
||||
pNxtN->pPEdge = pCurE;
|
||||
m_auxQueue[nQueue++] = pNxtN;
|
||||
}
|
||||
|
||||
// check four neighbor nodes
|
||||
int nNB = dimension==2?4:6;
|
||||
for(int k=0;k<nNB;k++)
|
||||
{
|
||||
if(dimension==2)
|
||||
{
|
||||
if(k==0 && c>0) pNxtN = &(m_Nodes[r][c-1]); // left
|
||||
else if(k==1 && r>0) pNxtN = &(m_Nodes[r-1][c]); // down
|
||||
else if(k==2 && c<binsDim2-1) pNxtN = &(m_Nodes[r][c+1]); // right
|
||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_Nodes[r+1][c]); // up
|
||||
else continue;
|
||||
}
|
||||
else if(dimension==3)
|
||||
{
|
||||
if(k==0 && c>0) pNxtN = &(m_3dNodes[r][c-1][z]); // left
|
||||
else if(k==1 && c<binsDim2-1) pNxtN = &(m_3dNodes[r][c+1][z]); // right
|
||||
else if(k==2 && r>0) pNxtN = &(m_3dNodes[r-1][c][z]); // down
|
||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_3dNodes[r+1][c][z]); // up
|
||||
else if(k==4 && z>0) pNxtN = &(m_3dNodes[r][c][z-1]); // shallow
|
||||
else if(k==5 && z<binsDim3-1) pNxtN = &(m_3dNodes[r][c][z+1]); // deep
|
||||
else continue;
|
||||
}
|
||||
if(pNxtN != pCurN->pParent)
|
||||
{
|
||||
CV_Assert(pNxtN != NULL);
|
||||
pNxtE = pNxtN->pChild;
|
||||
if(pNxtE && pNxtE->pChild==pCurN) // has connection
|
||||
{
|
||||
pNxtN->pParent = pCurN;
|
||||
pNxtN->pPEdge = pNxtE;
|
||||
pNxtN->pChild = NULL;
|
||||
m_auxQueue[nQueue++] = pNxtN;
|
||||
|
||||
pNxtE->pParent = pCurN; // reverse direction
|
||||
pNxtE->pChild = pNxtN;
|
||||
pNxtE->iDir = !pNxtE->iDir;
|
||||
|
||||
if(pCurE) pCurE->pNxt = pNxtE; // add to edge list
|
||||
else pCurN->pChild = pNxtE;
|
||||
pCurE = pNxtE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void EmdL1::updateSubtree(cvPEmdNode pRoot)
|
||||
{
|
||||
// Initialize auxiliary queue
|
||||
m_auxQueue[0] = pRoot;
|
||||
int nQueue = 1; // queue length
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
// BFS browing
|
||||
cvPEmdNode pCurN=NULL,pNxtN=NULL;
|
||||
cvPEmdEdge pCurE=NULL;
|
||||
while(iQHead<nQueue)
|
||||
{
|
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
pCurE = pCurN->pChild;
|
||||
|
||||
// browsing all children
|
||||
while(pCurE)
|
||||
{
|
||||
pNxtN = pCurE->pChild;
|
||||
pNxtN->iLevel = pCurN->iLevel+1;
|
||||
pNxtN->u = pCurE->iDir ? (pCurN->u - 1) : (pCurN->u + 1);
|
||||
pCurE = pCurE->pNxt;
|
||||
m_auxQueue[nQueue++] = pNxtN;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool EmdL1::isOptimal()
|
||||
{
|
||||
int iC, iMinC = 0;
|
||||
cvPEmdEdge pE;
|
||||
m_pEnter = NULL;
|
||||
m_iEnter = -1;
|
||||
|
||||
// test each NON-BV edges
|
||||
for(int k=0; k<nNBV; ++k)
|
||||
{
|
||||
pE = m_NBVEdges[k];
|
||||
iC = 1 - pE->pParent->u + pE->pChild->u;
|
||||
if(iC<iMinC)
|
||||
{
|
||||
iMinC = iC;
|
||||
m_iEnter= k;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Try reversing the direction
|
||||
iC = 1 + pE->pParent->u - pE->pChild->u;
|
||||
if(iC<iMinC)
|
||||
{
|
||||
iMinC = iC;
|
||||
m_iEnter= k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(m_iEnter>=0)
|
||||
{
|
||||
m_pEnter = m_NBVEdges[m_iEnter];
|
||||
if(iMinC == (1 - m_pEnter->pChild->u + m_pEnter->pParent->u)) {
|
||||
// reverse direction
|
||||
cvPEmdNode pN = m_pEnter->pParent;
|
||||
m_pEnter->pParent = m_pEnter->pChild;
|
||||
m_pEnter->pChild = pN;
|
||||
}
|
||||
|
||||
m_pEnter->iDir = 1;
|
||||
}
|
||||
return m_iEnter==-1;
|
||||
}
|
||||
|
||||
void EmdL1::findNewSolution()
|
||||
{
|
||||
// Find loop formed by adding the Enter BV edge.
|
||||
findLoopFromEnterBV();
|
||||
// Modify flow values along the loop
|
||||
cvPEmdEdge pE = NULL;
|
||||
CV_Assert(m_pLeave != NULL);
|
||||
float minFlow = m_pLeave->flow;
|
||||
int k;
|
||||
for(k=0; k<m_iFrom; k++)
|
||||
{
|
||||
pE = m_fromLoop[k];
|
||||
if(pE->iDir) pE->flow += minFlow; // outward
|
||||
else pE->flow -= minFlow; // inward
|
||||
}
|
||||
for(k=0; k<m_iTo; k++)
|
||||
{
|
||||
pE = m_toLoop[k];
|
||||
if(pE->iDir) pE->flow -= minFlow; // outward
|
||||
else pE->flow += minFlow; // inward
|
||||
}
|
||||
|
||||
// Update BV Tree, removing the Leaving-BV edge
|
||||
cvPEmdNode pLParentN = m_pLeave->pParent;
|
||||
cvPEmdNode pLChildN = m_pLeave->pChild;
|
||||
cvPEmdEdge pPreE = pLParentN->pChild;
|
||||
if(pPreE==m_pLeave)
|
||||
{
|
||||
pLParentN->pChild = m_pLeave->pNxt; // Leaving-BV is the first child
|
||||
}
|
||||
else
|
||||
{
|
||||
while(pPreE->pNxt != m_pLeave)
|
||||
pPreE = pPreE->pNxt;
|
||||
pPreE->pNxt = m_pLeave->pNxt; // remove Leaving-BV from child list
|
||||
}
|
||||
pLChildN->pParent = NULL;
|
||||
pLChildN->pPEdge = NULL;
|
||||
|
||||
m_NBVEdges[m_iEnter]= m_pLeave; // put the leaving-BV into the NBV array
|
||||
|
||||
// Add the Enter BV edge
|
||||
cvPEmdNode pEParentN = m_pEnter->pParent;
|
||||
cvPEmdNode pEChildN = m_pEnter->pChild;
|
||||
m_pEnter->flow = minFlow;
|
||||
m_pEnter->pNxt = pEParentN->pChild; // insert the Enter BV as the first child
|
||||
pEParentN->pChild = m_pEnter; // of its parent
|
||||
|
||||
// Recursively update the tree start from pEChildN
|
||||
cvPEmdNode pPreN = pEParentN;
|
||||
cvPEmdNode pCurN = pEChildN;
|
||||
cvPEmdNode pNxtN;
|
||||
cvPEmdEdge pNxtE, pPreE0;
|
||||
pPreE = m_pEnter;
|
||||
while(pCurN)
|
||||
{
|
||||
pNxtN = pCurN->pParent;
|
||||
pNxtE = pCurN->pPEdge;
|
||||
pCurN->pParent = pPreN;
|
||||
pCurN->pPEdge = pPreE;
|
||||
if(pNxtN)
|
||||
{
|
||||
// remove the edge from pNxtN's child list
|
||||
if(pNxtN->pChild==pNxtE)
|
||||
{
|
||||
pNxtN->pChild = pNxtE->pNxt; // first child
|
||||
}
|
||||
else
|
||||
{
|
||||
pPreE0 = pNxtN->pChild;
|
||||
while(pPreE0->pNxt != pNxtE)
|
||||
pPreE0 = pPreE0->pNxt;
|
||||
pPreE0->pNxt = pNxtE->pNxt; // remove Leaving-BV from child list
|
||||
}
|
||||
// reverse the parent-child direction
|
||||
pNxtE->pParent = pCurN;
|
||||
pNxtE->pChild = pNxtN;
|
||||
pNxtE->iDir = !pNxtE->iDir;
|
||||
pNxtE->pNxt = pCurN->pChild;
|
||||
pCurN->pChild = pNxtE;
|
||||
pPreE = pNxtE;
|
||||
pPreN = pCurN;
|
||||
}
|
||||
pCurN = pNxtN;
|
||||
}
|
||||
|
||||
// Update U at the child of the Enter BV
|
||||
pEChildN->u = m_pEnter->iDir?(pEParentN->u-1):(pEParentN->u + 1);
|
||||
pEChildN->iLevel = pEParentN->iLevel+1;
|
||||
}
|
||||
|
||||
void EmdL1::findLoopFromEnterBV()
|
||||
{
|
||||
// Initialize Leaving-BV edge
|
||||
float minFlow = std::numeric_limits<float>::max();
|
||||
cvPEmdEdge pE = NULL;
|
||||
int iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
||||
|
||||
// Using two loop list to store the loop nodes
|
||||
cvPEmdNode pFrom = m_pEnter->pParent;
|
||||
cvPEmdNode pTo = m_pEnter->pChild;
|
||||
m_iFrom = 0;
|
||||
m_iTo = 0;
|
||||
m_pLeave = NULL;
|
||||
|
||||
// Trace back to make pFrom and pTo at the same level
|
||||
while(pFrom->iLevel > pTo->iLevel)
|
||||
{
|
||||
pE = pFrom->pPEdge;
|
||||
m_fromLoop[m_iFrom++] = pE;
|
||||
if(!pE->iDir && pE->flow<minFlow)
|
||||
{
|
||||
minFlow = pE->flow;
|
||||
m_pLeave = pE;
|
||||
iLFlag = 0; // 0: in the FROM list
|
||||
}
|
||||
pFrom = pFrom->pParent;
|
||||
}
|
||||
|
||||
while(pTo->iLevel > pFrom->iLevel)
|
||||
{
|
||||
pE = pTo->pPEdge;
|
||||
m_toLoop[m_iTo++] = pE;
|
||||
if(pE->iDir && pE->flow<minFlow)
|
||||
{
|
||||
minFlow = pE->flow;
|
||||
m_pLeave = pE;
|
||||
iLFlag = 1; // 1: in the TO list
|
||||
}
|
||||
pTo = pTo->pParent;
|
||||
}
|
||||
|
||||
// Trace pTo and pFrom simultaneously till find their common ancester
|
||||
while(pTo!=pFrom)
|
||||
{
|
||||
pE = pFrom->pPEdge;
|
||||
m_fromLoop[m_iFrom++] = pE;
|
||||
if(!pE->iDir && pE->flow<minFlow)
|
||||
{
|
||||
minFlow = pE->flow;
|
||||
m_pLeave = pE;
|
||||
iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
||||
}
|
||||
pFrom = pFrom->pParent;
|
||||
|
||||
pE = pTo->pPEdge;
|
||||
m_toLoop[m_iTo++] = pE;
|
||||
if(pE->iDir && pE->flow<minFlow)
|
||||
{
|
||||
minFlow = pE->flow;
|
||||
m_pLeave = pE;
|
||||
iLFlag = 1; // 0: in the FROM list, 1: in the TO list
|
||||
}
|
||||
pTo = pTo->pParent;
|
||||
}
|
||||
|
||||
// Reverse the direction of the Enter BV edge if necessary
|
||||
if(iLFlag==0)
|
||||
{
|
||||
cvPEmdNode pN = m_pEnter->pParent;
|
||||
m_pEnter->pParent = m_pEnter->pChild;
|
||||
m_pEnter->pChild = pN;
|
||||
m_pEnter->iDir = !m_pEnter->iDir;
|
||||
}
|
||||
}
|
||||
|
||||
float EmdL1::compuTotalFlow()
|
||||
{
|
||||
// Computing the total flow as the final distance
|
||||
float f = 0;
|
||||
|
||||
// Initialize auxiliary queue
|
||||
m_auxQueue[0] = m_pRoot;
|
||||
int nQueue = 1; // length of queue
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
// BFS browing the tree
|
||||
cvPEmdNode pCurN=NULL,pNxtN=NULL;
|
||||
cvPEmdEdge pCurE=NULL;
|
||||
while(iQHead<nQueue)
|
||||
{
|
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
pCurE = pCurN->pChild;
|
||||
|
||||
// browsing all children
|
||||
while(pCurE)
|
||||
{
|
||||
f += pCurE->flow;
|
||||
pNxtN = pCurE->pChild;
|
||||
pCurE = pCurE->pNxt;
|
||||
m_auxQueue[nQueue++] = pNxtN;
|
||||
}
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Function *
|
||||
\****************************************************************************************/
|
||||
|
||||
float cv::EMDL1(InputArray _signature1, InputArray _signature2)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat signature1 = _signature1.getMat(), signature2 = _signature2.getMat();
|
||||
EmdL1 emdl1;
|
||||
return emdl1.getEMDL1(signature1, signature2);
|
||||
}
|
@ -1,148 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
|
||||
/****************************************************************************************\
|
||||
* For EMDL1 Framework *
|
||||
\****************************************************************************************/
|
||||
typedef struct cvEMDEdge* cvPEmdEdge;
|
||||
typedef struct cvEMDNode* cvPEmdNode;
|
||||
struct cvEMDNode
|
||||
{
|
||||
int pos[3]; // grid position
|
||||
float d; // initial value
|
||||
int u;
|
||||
// tree maintenance
|
||||
int iLevel; // level in the tree, 0 means root
|
||||
cvPEmdNode pParent; // pointer to its parent
|
||||
cvPEmdEdge pChild;
|
||||
cvPEmdEdge pPEdge; // point to the edge coming out from its parent
|
||||
};
|
||||
struct cvEMDEdge
|
||||
{
|
||||
float flow; // initial value
|
||||
int iDir; // 1:outward, 0:inward
|
||||
// tree maintenance
|
||||
cvPEmdNode pParent; // point to its parent
|
||||
cvPEmdNode pChild; // the child node
|
||||
cvPEmdEdge pNxt; // next child/edge
|
||||
};
|
||||
typedef std::vector<cvEMDNode> cvEMDNodeArray;
|
||||
typedef std::vector<cvEMDEdge> cvEMDEdgeArray;
|
||||
typedef std::vector<cvEMDNodeArray> cvEMDNodeArray2D;
|
||||
typedef std::vector<cvEMDEdgeArray> cvEMDEdgeArray2D;
|
||||
typedef std::vector<float> floatArray;
|
||||
typedef std::vector<floatArray> floatArray2D;
|
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Class *
|
||||
\****************************************************************************************/
|
||||
class EmdL1
|
||||
{
|
||||
public:
|
||||
EmdL1()
|
||||
{
|
||||
m_pRoot = NULL;
|
||||
binsDim1 = 0;
|
||||
binsDim2 = 0;
|
||||
binsDim3 = 0;
|
||||
dimension = 0;
|
||||
nMaxIt = 500;
|
||||
|
||||
m_pLeave = 0;
|
||||
m_iEnter = 0;
|
||||
nNBV = 0;
|
||||
m_nItr = 0;
|
||||
m_iTo = 0;
|
||||
m_iFrom = 0;
|
||||
m_pEnter = 0;
|
||||
}
|
||||
|
||||
~EmdL1()
|
||||
{
|
||||
}
|
||||
|
||||
float getEMDL1(cv::Mat &sig1, cv::Mat &sig2);
|
||||
void setMaxIteration(int _nMaxIt);
|
||||
|
||||
private:
|
||||
//-- SubFunctions called in the EMD algorithm
|
||||
bool initBaseTrees(int n1=0, int n2=0, int n3=0);
|
||||
bool fillBaseTrees(float *H1, float *H2);
|
||||
bool greedySolution();
|
||||
bool greedySolution2();
|
||||
bool greedySolution3();
|
||||
void initBVTree();
|
||||
void updateSubtree(cvPEmdNode pRoot);
|
||||
bool isOptimal();
|
||||
void findNewSolution();
|
||||
void findLoopFromEnterBV();
|
||||
float compuTotalFlow();
|
||||
|
||||
private:
|
||||
int dimension;
|
||||
int binsDim1, binsDim2, binsDim3; // the histogram contains m_n1 rows and m_n2 columns
|
||||
int nNBV; // number of Non-Basic Variables (NBV)
|
||||
int nMaxIt;
|
||||
cvEMDNodeArray2D m_Nodes; // all nodes
|
||||
cvEMDEdgeArray2D m_EdgesRight; // all edges to right
|
||||
cvEMDEdgeArray2D m_EdgesUp; // all edges to upward
|
||||
std::vector<cvEMDNodeArray2D> m_3dNodes; // all nodes for 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesRight; // all edges to right, 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesUp; // all edges to upward, 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesDeep; // all edges to deep, 3D
|
||||
std::vector<cvPEmdEdge> m_NBVEdges; // pointers to all NON-BV edges
|
||||
std::vector<cvPEmdNode> m_auxQueue; // auxiliary node queue
|
||||
cvPEmdNode m_pRoot; // root of the BV Tree
|
||||
cvPEmdEdge m_pEnter; // Enter BV edge
|
||||
int m_iEnter; // Enter BV edge, index in m_NBVEdges
|
||||
cvPEmdEdge m_pLeave; // Leave BV edge
|
||||
int m_nItr; // number of iteration
|
||||
// auxiliary variables for searching a new loop
|
||||
std::vector<cvPEmdEdge> m_fromLoop;
|
||||
std::vector<cvPEmdEdge> m_toLoop;
|
||||
int m_iFrom;
|
||||
int m_iTo;
|
||||
};
|
@ -1,157 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class HausdorffDistanceExtractorImpl CV_FINAL : public HausdorffDistanceExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructor */
|
||||
HausdorffDistanceExtractorImpl(int _distanceFlag = NORM_L1, float _rankProportion=0.6)
|
||||
{
|
||||
distanceFlag = _distanceFlag;
|
||||
rankProportion = _rankProportion;
|
||||
name_ = "ShapeDistanceExtractor.HAU";
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~HausdorffDistanceExtractorImpl()
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual float computeDistance(InputArray contour1, InputArray contour2) CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
virtual void setDistanceFlag(int _distanceFlag) CV_OVERRIDE {distanceFlag=_distanceFlag;}
|
||||
virtual int getDistanceFlag() const CV_OVERRIDE {return distanceFlag;}
|
||||
|
||||
virtual void setRankProportion(float _rankProportion) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert((_rankProportion>0) && (_rankProportion<=1));
|
||||
rankProportion=_rankProportion;
|
||||
}
|
||||
virtual float getRankProportion() const CV_OVERRIDE {return rankProportion;}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "distance" << distanceFlag
|
||||
<< "rank" << rankProportion;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
distanceFlag = (int)fn["distance"];
|
||||
rankProportion = (float)fn["rank"];
|
||||
}
|
||||
|
||||
private:
|
||||
int distanceFlag;
|
||||
float rankProportion;
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
};
|
||||
|
||||
//! Hausdorff distance for a pair of set of points
|
||||
static float _apply(const Mat &set1, const Mat &set2, int distType, double propRank)
|
||||
{
|
||||
// Building distance matrix //
|
||||
Mat disMat(set1.cols, set2.cols, CV_32F);
|
||||
int K = int(propRank*(disMat.rows-1));
|
||||
|
||||
for (int r=0; r<disMat.rows; r++)
|
||||
{
|
||||
for (int c=0; c<disMat.cols; c++)
|
||||
{
|
||||
Point2f diff = set1.at<Point2f>(0,r)-set2.at<Point2f>(0,c);
|
||||
disMat.at<float>(r,c) = (float)norm(Mat(diff), distType);
|
||||
}
|
||||
}
|
||||
|
||||
Mat shortest(disMat.rows,1,CV_32F);
|
||||
for (int ii=0; ii<disMat.rows; ii++)
|
||||
{
|
||||
Mat therow = disMat.row(ii);
|
||||
double mindis;
|
||||
minMaxIdx(therow, &mindis);
|
||||
shortest.at<float>(ii,0) = float(mindis);
|
||||
}
|
||||
Mat sorted;
|
||||
cv::sort(shortest, sorted, SORT_EVERY_ROW | SORT_DESCENDING);
|
||||
return sorted.at<float>(K,0);
|
||||
}
|
||||
|
||||
float HausdorffDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat set1=contour1.getMat(), set2=contour2.getMat();
|
||||
if (set1.type() != CV_32F)
|
||||
set1.convertTo(set1, CV_32F);
|
||||
if (set2.type() != CV_32F)
|
||||
set2.convertTo(set2, CV_32F);
|
||||
CV_Assert((set1.channels()==2) && (set1.cols>0));
|
||||
CV_Assert((set2.channels()==2) && (set2.cols>0));
|
||||
|
||||
// Force vectors column-based
|
||||
if (set1.dims > 1)
|
||||
set1 = set1.reshape(2, 1);
|
||||
if (set2.dims > 1)
|
||||
set2 = set2.reshape(2, 1);
|
||||
|
||||
return std::max( _apply(set1, set2, distanceFlag, rankProportion),
|
||||
_apply(set2, set1, distanceFlag, rankProportion) );
|
||||
}
|
||||
|
||||
Ptr <HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag, float rankProp)
|
||||
{
|
||||
return Ptr<HausdorffDistanceExtractor>(new HausdorffDistanceExtractorImpl(distanceFlag, rankProp));
|
||||
}
|
||||
|
||||
} // cv
|
@ -1,549 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*! */
|
||||
class NormHistogramCostExtractorImpl CV_FINAL : public NormHistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
NormHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost)
|
||||
{
|
||||
flag=_flag;
|
||||
nDummies=_nDummies;
|
||||
defaultCost=_defaultCost;
|
||||
name_ = "HistogramCostExtractor.NOR";
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~NormHistogramCostExtractorImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
void setNDummies(int _nDummies) CV_OVERRIDE
|
||||
{
|
||||
nDummies=_nDummies;
|
||||
}
|
||||
|
||||
int getNDummies() const CV_OVERRIDE
|
||||
{
|
||||
return nDummies;
|
||||
}
|
||||
|
||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE
|
||||
{
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
float getDefaultCost() const CV_OVERRIDE
|
||||
{
|
||||
return defaultCost;
|
||||
}
|
||||
|
||||
virtual void setNormFlag(int _flag) CV_OVERRIDE
|
||||
{
|
||||
flag=_flag;
|
||||
}
|
||||
|
||||
virtual int getNormFlag() const CV_OVERRIDE
|
||||
{
|
||||
return flag;
|
||||
}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "flag" << flag
|
||||
<< "dummies" << nDummies
|
||||
<< "default" << defaultCost;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
flag = (int)fn["flag"];
|
||||
nDummies = (int)fn["dummies"];
|
||||
defaultCost = (float)fn["default"];
|
||||
}
|
||||
|
||||
private:
|
||||
int flag;
|
||||
int nDummies;
|
||||
float defaultCost;
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
};
|
||||
|
||||
void NormHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat();
|
||||
Mat descriptors2=_descriptors2.getMat();
|
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
|
||||
_costMatrix.create(costrows, costrows, CV_32F);
|
||||
Mat costMatrix=_costMatrix.getMat();
|
||||
|
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1 = descriptors1.clone();
|
||||
cv::Mat scd2 = descriptors2.clone();
|
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++)
|
||||
{
|
||||
scd1.row(i)/=(sum(scd1.row(i))[0]+FLT_EPSILON);
|
||||
}
|
||||
for(int i=0; i<scd2.rows; i++)
|
||||
{
|
||||
scd2.row(i)/=(sum(scd2.row(i))[0]+FLT_EPSILON);
|
||||
}
|
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++)
|
||||
{
|
||||
for(int j=0; j<costrows; j++)
|
||||
{
|
||||
if (i<scd1.rows && j<scd2.rows)
|
||||
{
|
||||
Mat columnDiff = scd1.row(i)-scd2.row(j);
|
||||
costMatrix.at<float>(i,j)=(float)norm(columnDiff, flag);
|
||||
}
|
||||
else
|
||||
{
|
||||
costMatrix.at<float>(i,j)=defaultCost;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr <HistogramCostExtractor> createNormHistogramCostExtractor(int flag, int nDummies, float defaultCost)
|
||||
{
|
||||
return Ptr <HistogramCostExtractor>( new NormHistogramCostExtractorImpl(flag, nDummies, defaultCost) );
|
||||
}
|
||||
|
||||
/*! */
|
||||
class EMDHistogramCostExtractorImpl CV_FINAL : public EMDHistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
EMDHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost)
|
||||
{
|
||||
flag=_flag;
|
||||
nDummies=_nDummies;
|
||||
defaultCost=_defaultCost;
|
||||
name_ = "HistogramCostExtractor.EMD";
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~EMDHistogramCostExtractorImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
void setNDummies(int _nDummies) CV_OVERRIDE
|
||||
{
|
||||
nDummies=_nDummies;
|
||||
}
|
||||
|
||||
int getNDummies() const CV_OVERRIDE
|
||||
{
|
||||
return nDummies;
|
||||
}
|
||||
|
||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE
|
||||
{
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
float getDefaultCost() const CV_OVERRIDE
|
||||
{
|
||||
return defaultCost;
|
||||
}
|
||||
|
||||
virtual void setNormFlag(int _flag) CV_OVERRIDE
|
||||
{
|
||||
flag=_flag;
|
||||
}
|
||||
|
||||
virtual int getNormFlag() const CV_OVERRIDE
|
||||
{
|
||||
return flag;
|
||||
}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "flag" << flag
|
||||
<< "dummies" << nDummies
|
||||
<< "default" << defaultCost;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
flag = (int)fn["flag"];
|
||||
nDummies = (int)fn["dummies"];
|
||||
defaultCost = (float)fn["default"];
|
||||
}
|
||||
|
||||
private:
|
||||
int flag;
|
||||
int nDummies;
|
||||
float defaultCost;
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
};
|
||||
|
||||
void EMDHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat();
|
||||
Mat descriptors2=_descriptors2.getMat();
|
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
|
||||
_costMatrix.create(costrows, costrows, CV_32F);
|
||||
Mat costMatrix=_costMatrix.getMat();
|
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone();
|
||||
cv::Mat scd2=descriptors2.clone();
|
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd1.row(i);
|
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
for(int i=0; i<scd2.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd2.row(i);
|
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++)
|
||||
{
|
||||
for(int j=0; j<costrows; j++)
|
||||
{
|
||||
if (i<scd1.rows && j<scd2.rows)
|
||||
{
|
||||
cv::Mat sig1(scd1.cols,2,CV_32F), sig2(scd2.cols,2,CV_32F);
|
||||
sig1.col(0)=scd1.row(i).t();
|
||||
sig2.col(0)=scd2.row(j).t();
|
||||
for (int k=0; k<sig1.rows; k++)
|
||||
{
|
||||
sig1.at<float>(k,1)=float(k);
|
||||
}
|
||||
for (int k=0; k<sig2.rows; k++)
|
||||
{
|
||||
sig2.at<float>(k,1)=float(k);
|
||||
}
|
||||
|
||||
costMatrix.at<float>(i,j) = cv::EMD(sig1, sig2, flag);
|
||||
}
|
||||
else
|
||||
{
|
||||
costMatrix.at<float>(i,j) = defaultCost;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr <HistogramCostExtractor> createEMDHistogramCostExtractor(int flag, int nDummies, float defaultCost)
|
||||
{
|
||||
return Ptr <HistogramCostExtractor>( new EMDHistogramCostExtractorImpl(flag, nDummies, defaultCost) );
|
||||
}
|
||||
|
||||
/*! */
|
||||
class ChiHistogramCostExtractorImpl CV_FINAL : public ChiHistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
ChiHistogramCostExtractorImpl(int _nDummies, float _defaultCost)
|
||||
{
|
||||
name_ = "HistogramCostExtractor.CHI";
|
||||
nDummies=_nDummies;
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~ChiHistogramCostExtractorImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE;
|
||||
|
||||
//! setters / getters
|
||||
void setNDummies(int _nDummies) CV_OVERRIDE
|
||||
{
|
||||
nDummies=_nDummies;
|
||||
}
|
||||
|
||||
int getNDummies() const CV_OVERRIDE
|
||||
{
|
||||
return nDummies;
|
||||
}
|
||||
|
||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE
|
||||
{
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
float getDefaultCost() const CV_OVERRIDE
|
||||
{
|
||||
return defaultCost;
|
||||
}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "dummies" << nDummies
|
||||
<< "default" << defaultCost;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
nDummies = (int)fn["dummies"];
|
||||
defaultCost = (float)fn["default"];
|
||||
}
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
int nDummies;
|
||||
float defaultCost;
|
||||
};
|
||||
|
||||
void ChiHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat();
|
||||
Mat descriptors2=_descriptors2.getMat();
|
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
|
||||
_costMatrix.create(costrows, costrows, CV_32FC1);
|
||||
Mat costMatrix=_costMatrix.getMat();
|
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone();
|
||||
cv::Mat scd2=descriptors2.clone();
|
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd1.row(i);
|
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
for(int i=0; i<scd2.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd2.row(i);
|
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++)
|
||||
{
|
||||
for(int j=0; j<costrows; j++)
|
||||
{
|
||||
if (i<scd1.rows && j<scd2.rows)
|
||||
{
|
||||
float csum = 0;
|
||||
for(int k=0; k<scd2.cols; k++)
|
||||
{
|
||||
float resta=scd1.at<float>(i,k)-scd2.at<float>(j,k);
|
||||
float suma=scd1.at<float>(i,k)+scd2.at<float>(j,k);
|
||||
csum += resta*resta/(FLT_EPSILON+suma);
|
||||
}
|
||||
costMatrix.at<float>(i,j)=csum/2;
|
||||
}
|
||||
else
|
||||
{
|
||||
costMatrix.at<float>(i,j)=defaultCost;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr <HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies, float defaultCost)
|
||||
{
|
||||
return Ptr <HistogramCostExtractor>( new ChiHistogramCostExtractorImpl(nDummies, defaultCost) );
|
||||
}
|
||||
|
||||
/*! */
|
||||
class EMDL1HistogramCostExtractorImpl CV_FINAL : public EMDL1HistogramCostExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
EMDL1HistogramCostExtractorImpl(int _nDummies, float _defaultCost)
|
||||
{
|
||||
name_ = "HistogramCostExtractor.CHI";
|
||||
nDummies=_nDummies;
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~EMDL1HistogramCostExtractorImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE;
|
||||
|
||||
//! setters / getters
|
||||
void setNDummies(int _nDummies) CV_OVERRIDE
|
||||
{
|
||||
nDummies=_nDummies;
|
||||
}
|
||||
|
||||
int getNDummies() const CV_OVERRIDE
|
||||
{
|
||||
return nDummies;
|
||||
}
|
||||
|
||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE
|
||||
{
|
||||
defaultCost=_defaultCost;
|
||||
}
|
||||
|
||||
float getDefaultCost() const CV_OVERRIDE
|
||||
{
|
||||
return defaultCost;
|
||||
}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "dummies" << nDummies
|
||||
<< "default" << defaultCost;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
nDummies = (int)fn["dummies"];
|
||||
defaultCost = (float)fn["default"];
|
||||
}
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
int nDummies;
|
||||
float defaultCost;
|
||||
};
|
||||
|
||||
void EMDL1HistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat();
|
||||
Mat descriptors2=_descriptors2.getMat();
|
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies;
|
||||
_costMatrix.create(costrows, costrows, CV_32F);
|
||||
Mat costMatrix=_costMatrix.getMat();
|
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone();
|
||||
cv::Mat scd2=descriptors2.clone();
|
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd1.row(i);
|
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
for(int i=0; i<scd2.rows; i++)
|
||||
{
|
||||
cv::Mat row = scd2.row(i);
|
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON);
|
||||
}
|
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++)
|
||||
{
|
||||
for(int j=0; j<costrows; j++)
|
||||
{
|
||||
if (i<scd1.rows && j<scd2.rows)
|
||||
{
|
||||
cv::Mat sig1(scd1.cols,1,CV_32F), sig2(scd2.cols,1,CV_32F);
|
||||
sig1.col(0)=scd1.row(i).t();
|
||||
sig2.col(0)=scd2.row(j).t();
|
||||
costMatrix.at<float>(i,j) = cv::EMDL1(sig1, sig2);
|
||||
}
|
||||
else
|
||||
{
|
||||
costMatrix.at<float>(i,j) = defaultCost;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr <HistogramCostExtractor> createEMDL1HistogramCostExtractor(int nDummies, float defaultCost)
|
||||
{
|
||||
return Ptr <HistogramCostExtractor>( new EMDL1HistogramCostExtractorImpl(nDummies, defaultCost) );
|
||||
}
|
||||
|
||||
} // cv
|
@ -1,59 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_PRECOMP_H__
|
||||
#define __OPENCV_PRECOMP_H__
|
||||
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
#include "opencv2/calib3d.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/shape.hpp"
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/private.hpp"
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
|
||||
#endif
|
@ -1,793 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
* Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts
|
||||
* Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013.
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "scd_def.hpp"
|
||||
#include <limits>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations,
|
||||
const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer)
|
||||
{
|
||||
nAngularBins=_nAngularBins;
|
||||
nRadialBins=_nRadialBins;
|
||||
innerRadius=_innerRadius;
|
||||
outerRadius=_outerRadius;
|
||||
rotationInvariant=false;
|
||||
comparer=_comparer;
|
||||
iterations=_iterations;
|
||||
transformer=_transformer;
|
||||
bendingEnergyWeight=0.3f;
|
||||
imageAppearanceWeight=0.0f;
|
||||
shapeContextWeight=1.0f;
|
||||
sigma=10.0f;
|
||||
name_ = "ShapeDistanceExtractor.SCD";
|
||||
costFlag = 0;
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~ShapeContextDistanceExtractorImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operator
|
||||
virtual float computeDistance(InputArray contour1, InputArray contour2) CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
virtual void setAngularBins(int _nAngularBins) CV_OVERRIDE { CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins; }
|
||||
virtual int getAngularBins() const CV_OVERRIDE { return nAngularBins; }
|
||||
|
||||
virtual void setRadialBins(int _nRadialBins) CV_OVERRIDE { CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins; }
|
||||
virtual int getRadialBins() const CV_OVERRIDE { return nRadialBins; }
|
||||
|
||||
virtual void setInnerRadius(float _innerRadius) CV_OVERRIDE { CV_Assert(_innerRadius>0); innerRadius=_innerRadius; }
|
||||
virtual float getInnerRadius() const CV_OVERRIDE { return innerRadius; }
|
||||
|
||||
virtual void setOuterRadius(float _outerRadius) CV_OVERRIDE { CV_Assert(_outerRadius>0); outerRadius=_outerRadius; }
|
||||
virtual float getOuterRadius() const CV_OVERRIDE { return outerRadius; }
|
||||
|
||||
virtual void setRotationInvariant(bool _rotationInvariant) CV_OVERRIDE { rotationInvariant=_rotationInvariant; }
|
||||
virtual bool getRotationInvariant() const CV_OVERRIDE { return rotationInvariant; }
|
||||
|
||||
virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) CV_OVERRIDE { comparer = _comparer; }
|
||||
virtual Ptr<HistogramCostExtractor> getCostExtractor() const CV_OVERRIDE { return comparer; }
|
||||
|
||||
virtual void setShapeContextWeight(float _shapeContextWeight) CV_OVERRIDE { shapeContextWeight=_shapeContextWeight; }
|
||||
virtual float getShapeContextWeight() const CV_OVERRIDE { return shapeContextWeight; }
|
||||
|
||||
virtual void setImageAppearanceWeight(float _imageAppearanceWeight) CV_OVERRIDE { imageAppearanceWeight=_imageAppearanceWeight; }
|
||||
virtual float getImageAppearanceWeight() const CV_OVERRIDE { return imageAppearanceWeight; }
|
||||
|
||||
virtual void setBendingEnergyWeight(float _bendingEnergyWeight) CV_OVERRIDE { bendingEnergyWeight=_bendingEnergyWeight; }
|
||||
virtual float getBendingEnergyWeight() const CV_OVERRIDE { return bendingEnergyWeight; }
|
||||
|
||||
virtual void setStdDev(float _sigma) CV_OVERRIDE { sigma=_sigma; }
|
||||
virtual float getStdDev() const CV_OVERRIDE { return sigma; }
|
||||
|
||||
virtual void setImages(InputArray _image1, InputArray _image2) CV_OVERRIDE
|
||||
{
|
||||
Mat image1_=_image1.getMat(), image2_=_image2.getMat();
|
||||
CV_Assert((image1_.depth()==0) && (image2_.depth()==0));
|
||||
image1=image1_;
|
||||
image2=image2_;
|
||||
}
|
||||
|
||||
virtual void getImages(OutputArray _image1, OutputArray _image2) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert((!image1.empty()) && (!image2.empty()));
|
||||
image1.copyTo(_image1);
|
||||
image2.copyTo(_image2);
|
||||
}
|
||||
|
||||
virtual void setIterations(int _iterations) CV_OVERRIDE {CV_Assert(_iterations>0); iterations=_iterations;}
|
||||
virtual int getIterations() const CV_OVERRIDE {return iterations;}
|
||||
|
||||
virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) CV_OVERRIDE {transformer=_transformer;}
|
||||
virtual Ptr<ShapeTransformer> getTransformAlgorithm() const CV_OVERRIDE {return transformer;}
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "nRads" << nRadialBins
|
||||
<< "nAngs" << nAngularBins
|
||||
<< "iters" << iterations
|
||||
<< "img_1" << image1
|
||||
<< "img_2" << image2
|
||||
<< "beWei" << bendingEnergyWeight
|
||||
<< "scWei" << shapeContextWeight
|
||||
<< "iaWei" << imageAppearanceWeight
|
||||
<< "costF" << costFlag
|
||||
<< "rotIn" << rotationInvariant
|
||||
<< "sigma" << sigma;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
nRadialBins = (int)fn["nRads"];
|
||||
nAngularBins = (int)fn["nAngs"];
|
||||
iterations = (int)fn["iters"];
|
||||
bendingEnergyWeight = (float)fn["beWei"];
|
||||
shapeContextWeight = (float)fn["scWei"];
|
||||
imageAppearanceWeight = (float)fn["iaWei"];
|
||||
costFlag = (int)fn["costF"];
|
||||
sigma = (float)fn["sigma"];
|
||||
}
|
||||
|
||||
protected:
|
||||
int nAngularBins;
|
||||
int nRadialBins;
|
||||
float innerRadius;
|
||||
float outerRadius;
|
||||
bool rotationInvariant;
|
||||
int costFlag;
|
||||
int iterations;
|
||||
Ptr<ShapeTransformer> transformer;
|
||||
Ptr<HistogramCostExtractor> comparer;
|
||||
Mat image1;
|
||||
Mat image2;
|
||||
float bendingEnergyWeight;
|
||||
float imageAppearanceWeight;
|
||||
float shapeContextWeight;
|
||||
float sigma;
|
||||
String name_;
|
||||
};
|
||||
|
||||
float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// Checking //
|
||||
Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2;
|
||||
if (set1.type() != CV_32F)
|
||||
sset1.convertTo(set1, CV_32F);
|
||||
else
|
||||
sset1.copyTo(set1);
|
||||
|
||||
if (set2.type() != CV_32F)
|
||||
sset2.convertTo(set2, CV_32F);
|
||||
else
|
||||
sset2.copyTo(set2);
|
||||
|
||||
CV_Assert((set1.channels()==2) && (set1.cols>0));
|
||||
CV_Assert((set2.channels()==2) && (set2.cols>0));
|
||||
|
||||
// Force vectors column-based
|
||||
if (set1.dims > 1)
|
||||
set1 = set1.reshape(2, 1);
|
||||
if (set2.dims > 1)
|
||||
set2 = set2.reshape(2, 1);
|
||||
|
||||
if (imageAppearanceWeight!=0)
|
||||
{
|
||||
CV_Assert((!image1.empty()) && (!image2.empty()));
|
||||
}
|
||||
|
||||
// Initializing Extractor, Descriptor structures and Matcher //
|
||||
SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
|
||||
Mat set1SCD;
|
||||
SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
|
||||
Mat set2SCD;
|
||||
SCDMatcher matcher;
|
||||
std::vector<DMatch> matches;
|
||||
|
||||
// Distance components (The output is a linear combination of these 3) //
|
||||
float sDistance=0, bEnergy=0, iAppearance=0;
|
||||
float beta;
|
||||
|
||||
// Initializing some variables //
|
||||
std::vector<int> inliers1, inliers2;
|
||||
|
||||
Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>();
|
||||
|
||||
Mat warpedImage;
|
||||
int ii, jj, pt;
|
||||
|
||||
for (ii=0; ii<iterations; ii++)
|
||||
{
|
||||
// Extract SCD descriptor in the set1 //
|
||||
set1SCE.extractSCD(set1, set1SCD, inliers1);
|
||||
|
||||
// Extract SCD descriptor of the set2 (TARGET) //
|
||||
set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance());
|
||||
|
||||
// regularization parameter with annealing rate annRate //
|
||||
beta=set1SCE.getMeanDistance();
|
||||
beta *= beta;
|
||||
|
||||
// match //
|
||||
matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2);
|
||||
|
||||
// apply TPS transform //
|
||||
if ( !transDown.empty() )
|
||||
transDown->setRegularizationParameter(beta);
|
||||
transformer->estimateTransformation(set1, set2, matches);
|
||||
bEnergy += transformer->applyTransformation(set1, set1);
|
||||
|
||||
// Image appearance //
|
||||
if (imageAppearanceWeight!=0)
|
||||
{
|
||||
// Have to accumulate the transformation along all the iterations
|
||||
if (ii==0)
|
||||
{
|
||||
if ( !transDown.empty() )
|
||||
{
|
||||
image2.copyTo(warpedImage);
|
||||
}
|
||||
else
|
||||
{
|
||||
image1.copyTo(warpedImage);
|
||||
}
|
||||
}
|
||||
transformer->warpImage(warpedImage, warpedImage);
|
||||
}
|
||||
}
|
||||
|
||||
Mat gaussWindow, diffIm;
|
||||
if (imageAppearanceWeight!=0)
|
||||
{
|
||||
// compute appearance cost
|
||||
if ( !transDown.empty() )
|
||||
{
|
||||
resize(warpedImage, warpedImage, image1.size(), 0, 0, INTER_LINEAR_EXACT);
|
||||
Mat temp=(warpedImage-image1);
|
||||
multiply(temp, temp, diffIm);
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(warpedImage, warpedImage, image2.size(), 0, 0, INTER_LINEAR_EXACT);
|
||||
Mat temp=(warpedImage-image2);
|
||||
multiply(temp, temp, diffIm);
|
||||
}
|
||||
gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F);
|
||||
for (pt=0; pt<sset1.cols; pt++)
|
||||
{
|
||||
Point2f p = sset1.at<Point2f>(0,pt);
|
||||
for (ii=0; ii<diffIm.rows; ii++)
|
||||
{
|
||||
for (jj=0; jj<diffIm.cols; jj++)
|
||||
{
|
||||
float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI));
|
||||
gaussWindow.at<float>(ii,jj) += val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Mat appIm(diffIm.rows, diffIm.cols, CV_32F);
|
||||
for (ii=0; ii<diffIm.rows; ii++)
|
||||
{
|
||||
for (jj=0; jj<diffIm.cols; jj++)
|
||||
{
|
||||
float elema=float( diffIm.at<uchar>(ii,jj) )/255;
|
||||
float elemb=gaussWindow.at<float>(ii,jj);
|
||||
appIm.at<float>(ii,jj) = elema*elemb;
|
||||
}
|
||||
}
|
||||
iAppearance = float(cv::sum(appIm)[0]/sset1.cols);
|
||||
}
|
||||
sDistance = matcher.getMatchingCost();
|
||||
|
||||
return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight);
|
||||
}
|
||||
|
||||
Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations,
|
||||
const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer)
|
||||
{
|
||||
return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius,
|
||||
outerRadius, iterations, comparer, transformer) );
|
||||
}
|
||||
|
||||
//! SCD
|
||||
void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance)
|
||||
{
|
||||
cv::Mat contourMat = contour;
|
||||
cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
|
||||
cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
|
||||
|
||||
std::vector<double> logspaces, angspaces;
|
||||
logarithmicSpaces(logspaces);
|
||||
angularSpaces(angspaces);
|
||||
buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance);
|
||||
buildAngleMatrix(contourMat, angleMatrix);
|
||||
|
||||
// Now, build the descriptor matrix (each row is a point) //
|
||||
descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F);
|
||||
|
||||
for (int ptidx=0; ptidx<contourMat.cols; ptidx++)
|
||||
{
|
||||
for (int cmp=0; cmp<contourMat.cols; cmp++)
|
||||
{
|
||||
if (ptidx==cmp) continue;
|
||||
if ((int)queryInliers.size()>0)
|
||||
{
|
||||
if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
|
||||
}
|
||||
|
||||
int angidx=-1, radidx=-1;
|
||||
for (int i=0; i<nRadialBins; i++)
|
||||
{
|
||||
if (disMatrix.at<float>(ptidx, cmp)<logspaces[i])
|
||||
{
|
||||
radidx=i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (int i=0; i<nAngularBins; i++)
|
||||
{
|
||||
if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i])
|
||||
{
|
||||
angidx=i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (angidx!=-1 && radidx!=-1)
|
||||
{
|
||||
int idx = angidx+radidx*nAngularBins;
|
||||
descriptors.at<float>(ptidx, idx)++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const
|
||||
{
|
||||
double logmin=log10(innerRadius);
|
||||
double logmax=log10(outerRadius);
|
||||
double delta=(logmax-logmin)/(nRadialBins-1);
|
||||
double accdelta=0;
|
||||
|
||||
for (int i=0; i<nRadialBins; i++)
|
||||
{
|
||||
double val = std::pow(10,logmin+accdelta);
|
||||
vecSpaces.push_back(val);
|
||||
accdelta += delta;
|
||||
}
|
||||
}
|
||||
|
||||
void SCD::angularSpaces(std::vector<double> &vecSpaces) const
|
||||
{
|
||||
double delta=2*CV_PI/nAngularBins;
|
||||
double val=0;
|
||||
|
||||
for (int i=0; i<nAngularBins; i++)
|
||||
{
|
||||
val += delta;
|
||||
vecSpaces.push_back(val);
|
||||
}
|
||||
}
|
||||
|
||||
void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance)
|
||||
{
|
||||
cv::Mat contourMat = contour;
|
||||
cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U);
|
||||
|
||||
for (int i=0; i<contourMat.cols; i++)
|
||||
{
|
||||
for (int j=0; j<contourMat.cols; j++)
|
||||
{
|
||||
disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 );
|
||||
if (_meanDistance<0)
|
||||
{
|
||||
if (queryInliers.size()>0)
|
||||
{
|
||||
mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
mask.at<char>(i,j)=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (_meanDistance<0)
|
||||
{
|
||||
meanDistance=(float)mean(disMatrix, mask)[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
meanDistance=_meanDistance;
|
||||
}
|
||||
disMatrix/=meanDistance+FLT_EPSILON;
|
||||
}
|
||||
|
||||
void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const
|
||||
{
|
||||
cv::Mat contourMat = contour;
|
||||
|
||||
// if descriptor is rotationInvariant compute massCenter //
|
||||
cv::Point2f massCenter(0,0);
|
||||
if (rotationInvariant)
|
||||
{
|
||||
for (int i=0; i<contourMat.cols; i++)
|
||||
{
|
||||
massCenter+=contourMat.at<cv::Point2f>(0,i);
|
||||
}
|
||||
massCenter.x=massCenter.x/(float)contourMat.cols;
|
||||
massCenter.y=massCenter.y/(float)contourMat.cols;
|
||||
}
|
||||
|
||||
|
||||
for (int i=0; i<contourMat.cols; i++)
|
||||
{
|
||||
for (int j=0; j<contourMat.cols; j++)
|
||||
{
|
||||
if (i==j)
|
||||
{
|
||||
angleMatrix.at<float>(i,j)=0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j);
|
||||
angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x);
|
||||
|
||||
if (rotationInvariant)
|
||||
{
|
||||
cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter;
|
||||
float refAngle = atan2(refPt.y, refPt.x);
|
||||
angleMatrix.at<float>(i,j) -= refAngle;
|
||||
}
|
||||
angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//! SCDMatcher
|
||||
void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches,
|
||||
cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2)
|
||||
{
|
||||
matches.clear();
|
||||
|
||||
// Build the cost Matrix between descriptors //
|
||||
cv::Mat costMat;
|
||||
buildCostMatrix(descriptors1, descriptors2, costMat, comparer);
|
||||
|
||||
// Solve the matching problem using the hungarian method //
|
||||
hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows);
|
||||
}
|
||||
|
||||
void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2,
|
||||
cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix);
|
||||
}
|
||||
|
||||
void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1,
|
||||
std::vector<int> &inliers2, int sizeScd1, int sizeScd2)
|
||||
{
|
||||
std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0);
|
||||
std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows);
|
||||
std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows);
|
||||
|
||||
const float LOWV = 1e-10f;
|
||||
bool unassignedfound;
|
||||
int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0;
|
||||
int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0;
|
||||
float min=0, h=0, umin=0, usubmin=0, v2=0;
|
||||
|
||||
// COLUMN REDUCTION //
|
||||
for (j = costMatrix.rows-1; j >= 0; j--)
|
||||
{
|
||||
// find minimum cost over rows.
|
||||
min = costMatrix.at<float>(0,j);
|
||||
imin = 0;
|
||||
for (i = 1; i < costMatrix.rows; i++)
|
||||
if (costMatrix.at<float>(i,j) < min)
|
||||
{
|
||||
min = costMatrix.at<float>(i,j);
|
||||
imin = i;
|
||||
}
|
||||
v[j] = min;
|
||||
|
||||
if (++matches[imin] == 1)
|
||||
{
|
||||
rowsol[imin] = j;
|
||||
colsol[j] = imin;
|
||||
}
|
||||
else
|
||||
{
|
||||
colsol[j]=-1;
|
||||
}
|
||||
}
|
||||
|
||||
// REDUCTION TRANSFER //
|
||||
for (i=0; i<costMatrix.rows; i++)
|
||||
{
|
||||
if (matches[i] == 0)
|
||||
{
|
||||
free[numfree++] = i;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (matches[i] == 1)
|
||||
{
|
||||
j1=rowsol[i];
|
||||
min=std::numeric_limits<float>::max();
|
||||
for (j=0; j<costMatrix.rows; j++)
|
||||
{
|
||||
if (j!=j1)
|
||||
{
|
||||
if (costMatrix.at<float>(i,j)-v[j] < min)
|
||||
{
|
||||
min=costMatrix.at<float>(i,j)-v[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
v[j1] = v[j1]-min;
|
||||
}
|
||||
}
|
||||
}
|
||||
// AUGMENTING ROW REDUCTION //
|
||||
int loopcnt = 0;
|
||||
do
|
||||
{
|
||||
loopcnt++;
|
||||
k=0;
|
||||
prvnumfree=numfree;
|
||||
numfree=0;
|
||||
while (k < prvnumfree)
|
||||
{
|
||||
i=free[k];
|
||||
k++;
|
||||
umin = costMatrix.at<float>(i,0)-v[0];
|
||||
j1=0;
|
||||
usubmin = std::numeric_limits<float>::max();
|
||||
for (j=1; j<costMatrix.rows; j++)
|
||||
{
|
||||
h = costMatrix.at<float>(i,j)-v[j];
|
||||
if (h < usubmin)
|
||||
{
|
||||
if (h >= umin)
|
||||
{
|
||||
usubmin = h;
|
||||
j2 = j;
|
||||
}
|
||||
else
|
||||
{
|
||||
usubmin = umin;
|
||||
umin = h;
|
||||
j2 = j1;
|
||||
j1 = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
i0 = colsol[j1];
|
||||
|
||||
if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
|
||||
{
|
||||
v[j1] = v[j1] - (usubmin - umin);
|
||||
}
|
||||
else // minimum and subminimum equal.
|
||||
{
|
||||
if (i0 >= 0) // minimum column j1 is assigned.
|
||||
{
|
||||
j1 = j2;
|
||||
i0 = colsol[j2];
|
||||
}
|
||||
}
|
||||
// (re-)assign i to j1, possibly de-assigning an i0.
|
||||
rowsol[i]=j1;
|
||||
colsol[j1]=i;
|
||||
|
||||
if (i0 >= 0)
|
||||
{
|
||||
//if( umin < usubmin )
|
||||
if (fabs(umin-usubmin) > LOWV)
|
||||
{
|
||||
free[--k] = i0;
|
||||
}
|
||||
else
|
||||
{
|
||||
free[numfree++] = i0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}while (loopcnt<2); // repeat once.
|
||||
|
||||
// AUGMENT SOLUTION for each free row //
|
||||
for (f = 0; f<numfree; f++)
|
||||
{
|
||||
freerow = free[f]; // start row of augmenting path.
|
||||
// Dijkstra shortest path algorithm.
|
||||
// runs until unassigned column added to shortest path tree.
|
||||
for (j = 0; j < costMatrix.rows; j++)
|
||||
{
|
||||
d[j] = costMatrix.at<float>(freerow,j) - v[j];
|
||||
pred[j] = float(freerow);
|
||||
collist[j] = j; // init column list.
|
||||
}
|
||||
|
||||
low=0; // columns in 0..low-1 are ready, now none.
|
||||
up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
|
||||
unassignedfound = false;
|
||||
do
|
||||
{
|
||||
if (up == low)
|
||||
{
|
||||
last=low-1;
|
||||
min = d[collist[up++]];
|
||||
for (k = up; k < costMatrix.rows; k++)
|
||||
{
|
||||
j = collist[k];
|
||||
h = d[j];
|
||||
if (h <= min)
|
||||
{
|
||||
if (h < min) // new minimum.
|
||||
{
|
||||
up = low; // restart list at index low.
|
||||
min = h;
|
||||
}
|
||||
collist[k] = collist[up];
|
||||
collist[up++] = j;
|
||||
}
|
||||
}
|
||||
for (k=low; k<up; k++)
|
||||
{
|
||||
if (colsol[collist[k]] < 0)
|
||||
{
|
||||
endofpath = collist[k];
|
||||
unassignedfound = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!unassignedfound)
|
||||
{
|
||||
// update 'distances' between freerow and all unscanned columns, via next scanned column.
|
||||
j1 = collist[low];
|
||||
low++;
|
||||
i = colsol[j1];
|
||||
h = costMatrix.at<float>(i,j1)-v[j1]-min;
|
||||
|
||||
for (k = up; k < costMatrix.rows; k++)
|
||||
{
|
||||
j = collist[k];
|
||||
v2 = costMatrix.at<float>(i,j) - v[j] - h;
|
||||
if (v2 < d[j])
|
||||
{
|
||||
pred[j] = float(i);
|
||||
if (v2 == min)
|
||||
{
|
||||
if (colsol[j] < 0)
|
||||
{
|
||||
// if unassigned, shortest augmenting path is complete.
|
||||
endofpath = j;
|
||||
unassignedfound = true;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
collist[k] = collist[up];
|
||||
collist[up++] = j;
|
||||
}
|
||||
}
|
||||
d[j] = v2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}while (!unassignedfound);
|
||||
|
||||
// update column prices.
|
||||
for (k = 0; k <= last; k++)
|
||||
{
|
||||
j1 = collist[k];
|
||||
v[j1] = v[j1] + d[j1] - min;
|
||||
}
|
||||
|
||||
// reset row and column assignments along the alternating path.
|
||||
do
|
||||
{
|
||||
i = int(pred[endofpath]);
|
||||
colsol[endofpath] = i;
|
||||
j1 = endofpath;
|
||||
endofpath = rowsol[i];
|
||||
rowsol[i] = j1;
|
||||
}while (i != freerow);
|
||||
}
|
||||
|
||||
// calculate symmetric shape context cost
|
||||
cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2));
|
||||
CV_Assert(!trueCostMatrix.empty());
|
||||
float leftcost = 0;
|
||||
for (int nrow=0; nrow<trueCostMatrix.rows; nrow++)
|
||||
{
|
||||
double minval;
|
||||
minMaxIdx(trueCostMatrix.row(nrow), &minval);
|
||||
leftcost+=float(minval);
|
||||
}
|
||||
leftcost /= trueCostMatrix.rows;
|
||||
|
||||
float rightcost = 0;
|
||||
for (int ncol=0; ncol<trueCostMatrix.cols; ncol++)
|
||||
{
|
||||
double minval;
|
||||
minMaxIdx(trueCostMatrix.col(ncol), &minval);
|
||||
rightcost+=float(minval);
|
||||
}
|
||||
rightcost /= trueCostMatrix.cols;
|
||||
|
||||
minMatchCost = std::max(leftcost,rightcost);
|
||||
|
||||
// Save in a DMatch vector
|
||||
for (i=0;i<costMatrix.cols;i++)
|
||||
{
|
||||
cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
|
||||
outMatches.push_back(singleMatch);
|
||||
}
|
||||
|
||||
// Update inliers
|
||||
inliers1.reserve(sizeScd1);
|
||||
for (size_t kc = 0; kc<inliers1.size(); kc++)
|
||||
{
|
||||
if (rowsol[kc]<sizeScd2) // if a real match
|
||||
inliers1[kc]=1;
|
||||
else
|
||||
inliers1[kc]=0;
|
||||
}
|
||||
inliers2.reserve(sizeScd2);
|
||||
for (size_t kc = 0; kc<inliers2.size(); kc++)
|
||||
{
|
||||
if (colsol[kc]<sizeScd1) // if a real match
|
||||
inliers2[kc]=1;
|
||||
else
|
||||
inliers2[kc]=0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -1,132 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
/*
|
||||
* ShapeContextDescriptor class
|
||||
*/
|
||||
class SCD
|
||||
{
|
||||
public:
|
||||
//! the full constructor taking all the necessary parameters
|
||||
explicit SCD(int _nAngularBins=12, int _nRadialBins=5,
|
||||
double _innerRadius=0.1, double _outerRadius=1, bool _rotationInvariant=false)
|
||||
{
|
||||
setAngularBins(_nAngularBins);
|
||||
setRadialBins(_nRadialBins);
|
||||
setInnerRadius(_innerRadius);
|
||||
setOuterRadius(_outerRadius);
|
||||
setRotationInvariant(_rotationInvariant);
|
||||
meanDistance = 0;
|
||||
}
|
||||
|
||||
void extractSCD(cv::Mat& contour, cv::Mat& descriptors,
|
||||
const std::vector<int>& queryInliers=std::vector<int>(),
|
||||
const float _meanDistance=-1);
|
||||
|
||||
int descriptorSize() {return nAngularBins*nRadialBins;}
|
||||
void setAngularBins(int angularBins) { nAngularBins=angularBins; }
|
||||
void setRadialBins(int radialBins) { nRadialBins=radialBins; }
|
||||
void setInnerRadius(double _innerRadius) { innerRadius=_innerRadius; }
|
||||
void setOuterRadius(double _outerRadius) { outerRadius=_outerRadius; }
|
||||
void setRotationInvariant(bool _rotationInvariant) { rotationInvariant=_rotationInvariant; }
|
||||
int getAngularBins() const { return nAngularBins; }
|
||||
int getRadialBins() const { return nRadialBins; }
|
||||
double getInnerRadius() const { return innerRadius; }
|
||||
double getOuterRadius() const { return outerRadius; }
|
||||
bool getRotationInvariant() const { return rotationInvariant; }
|
||||
float getMeanDistance() const { return meanDistance; }
|
||||
|
||||
private:
|
||||
int nAngularBins;
|
||||
int nRadialBins;
|
||||
double innerRadius;
|
||||
double outerRadius;
|
||||
bool rotationInvariant;
|
||||
float meanDistance;
|
||||
|
||||
protected:
|
||||
void logarithmicSpaces(std::vector<double>& vecSpaces) const;
|
||||
void angularSpaces(std::vector<double>& vecSpaces) const;
|
||||
|
||||
void buildNormalizedDistanceMatrix(cv::Mat& contour,
|
||||
cv::Mat& disMatrix, const std::vector<int> &queryInliers,
|
||||
const float _meanDistance=-1);
|
||||
|
||||
void buildAngleMatrix(cv::Mat& contour,
|
||||
cv::Mat& angleMatrix) const;
|
||||
};
|
||||
|
||||
/*
|
||||
* Matcher
|
||||
*/
|
||||
class SCDMatcher
|
||||
{
|
||||
public:
|
||||
// the full constructor
|
||||
SCDMatcher() : minMatchCost(0)
|
||||
{
|
||||
}
|
||||
|
||||
// the matcher function using Hungarian method
|
||||
void matchDescriptors(cv::Mat& descriptors1, cv::Mat& descriptors2, std::vector<cv::DMatch>& matches, cv::Ptr<cv::HistogramCostExtractor>& comparer,
|
||||
std::vector<int>& inliers1, std::vector<int> &inliers2);
|
||||
|
||||
// matching cost
|
||||
float getMatchingCost() const {return minMatchCost;}
|
||||
|
||||
private:
|
||||
float minMatchCost;
|
||||
protected:
|
||||
void buildCostMatrix(const cv::Mat& descriptors1, const cv::Mat& descriptors2,
|
||||
cv::Mat& costMatrix, cv::Ptr<cv::HistogramCostExtractor>& comparer) const;
|
||||
void hungarian(cv::Mat& costMatrix, std::vector<cv::DMatch>& outMatches, std::vector<int> &inliers1,
|
||||
std::vector<int> &inliers2, int sizeScd1=0, int sizeScd2=0);
|
||||
|
||||
};
|
||||
|
||||
}
|
@ -1,295 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class ThinPlateSplineShapeTransformerImpl CV_FINAL : public ThinPlateSplineShapeTransformer
|
||||
{
|
||||
public:
|
||||
/* Constructors */
|
||||
ThinPlateSplineShapeTransformerImpl()
|
||||
{
|
||||
regularizationParameter=0;
|
||||
name_ = "ShapeTransformer.TPS";
|
||||
tpsComputed=false;
|
||||
transformCost = 0;
|
||||
}
|
||||
|
||||
ThinPlateSplineShapeTransformerImpl(double _regularizationParameter)
|
||||
{
|
||||
regularizationParameter=_regularizationParameter;
|
||||
name_ = "ShapeTransformer.TPS";
|
||||
tpsComputed=false;
|
||||
transformCost = 0;
|
||||
}
|
||||
|
||||
/* Destructor */
|
||||
~ThinPlateSplineShapeTransformerImpl() CV_OVERRIDE
|
||||
{
|
||||
}
|
||||
|
||||
//! the main operators
|
||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches) CV_OVERRIDE;
|
||||
virtual float applyTransformation(InputArray inPts, OutputArray output=noArray()) CV_OVERRIDE;
|
||||
virtual void warpImage(InputArray transformingImage, OutputArray output,
|
||||
int flags, int borderMode, const Scalar& borderValue) const CV_OVERRIDE;
|
||||
|
||||
//! Setters/Getters
|
||||
virtual void setRegularizationParameter(double _regularizationParameter) CV_OVERRIDE { regularizationParameter=_regularizationParameter; }
|
||||
virtual double getRegularizationParameter() const CV_OVERRIDE { return regularizationParameter; }
|
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const CV_OVERRIDE
|
||||
{
|
||||
writeFormat(fs);
|
||||
fs << "name" << name_
|
||||
<< "regularization" << regularizationParameter;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
regularizationParameter = (int)fn["regularization"];
|
||||
}
|
||||
|
||||
private:
|
||||
bool tpsComputed;
|
||||
double regularizationParameter;
|
||||
float transformCost;
|
||||
Mat tpsParameters;
|
||||
Mat shapeReference;
|
||||
|
||||
protected:
|
||||
String name_;
|
||||
};
|
||||
|
||||
static float distance(Point2f p, Point2f q)
|
||||
{
|
||||
Point2f diff = p - q;
|
||||
float norma = diff.x*diff.x + diff.y*diff.y;// - 2*diff.x*diff.y;
|
||||
if (norma<0) norma=0;
|
||||
//else norma = std::sqrt(norma);
|
||||
norma = norma*std::log(norma+FLT_EPSILON);
|
||||
return norma;
|
||||
}
|
||||
|
||||
static Point2f _applyTransformation(const Mat &shapeRef, const Point2f point, const Mat &tpsParameters)
|
||||
{
|
||||
Point2f out;
|
||||
for (int i=0; i<2; i++)
|
||||
{
|
||||
float a1=tpsParameters.at<float>(tpsParameters.rows-3,i);
|
||||
float ax=tpsParameters.at<float>(tpsParameters.rows-2,i);
|
||||
float ay=tpsParameters.at<float>(tpsParameters.rows-1,i);
|
||||
|
||||
float affine=a1+ax*point.x+ay*point.y;
|
||||
float nonrigid=0;
|
||||
for (int j=0; j<shapeRef.rows; j++)
|
||||
{
|
||||
nonrigid+=tpsParameters.at<float>(j,i)*
|
||||
distance(Point2f(shapeRef.at<float>(j,0),shapeRef.at<float>(j,1)),
|
||||
point);
|
||||
}
|
||||
if (i==0)
|
||||
{
|
||||
out.x=affine+nonrigid;
|
||||
}
|
||||
if (i==1)
|
||||
{
|
||||
out.y=affine+nonrigid;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
/* public methods */
|
||||
void ThinPlateSplineShapeTransformerImpl::warpImage(InputArray transformingImage, OutputArray output,
|
||||
int flags, int borderMode, const Scalar& borderValue) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert(tpsComputed==true);
|
||||
|
||||
Mat theinput = transformingImage.getMat();
|
||||
Mat mapX(theinput.rows, theinput.cols, CV_32FC1);
|
||||
Mat mapY(theinput.rows, theinput.cols, CV_32FC1);
|
||||
|
||||
for (int row = 0; row < theinput.rows; row++)
|
||||
{
|
||||
for (int col = 0; col < theinput.cols; col++)
|
||||
{
|
||||
Point2f pt = _applyTransformation(shapeReference, Point2f(float(col), float(row)), tpsParameters);
|
||||
mapX.at<float>(row, col) = pt.x;
|
||||
mapY.at<float>(row, col) = pt.y;
|
||||
}
|
||||
}
|
||||
remap(transformingImage, output, mapX, mapY, flags, borderMode, borderValue);
|
||||
}
|
||||
|
||||
float ThinPlateSplineShapeTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert(tpsComputed);
|
||||
Mat pts1 = inPts.getMat();
|
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0));
|
||||
|
||||
//Apply transformation in the complete set of points
|
||||
// Ensambling output //
|
||||
if (outPts.needed())
|
||||
{
|
||||
outPts.create(1,pts1.cols, CV_32FC2);
|
||||
Mat outMat = outPts.getMat();
|
||||
for (int i=0; i<pts1.cols; i++)
|
||||
{
|
||||
Point2f pt=pts1.at<Point2f>(0,i);
|
||||
outMat.at<Point2f>(0,i)=_applyTransformation(shapeReference, pt, tpsParameters);
|
||||
}
|
||||
}
|
||||
|
||||
return transformCost;
|
||||
}
|
||||
|
||||
void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2,
|
||||
std::vector<DMatch>& _matches )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat pts1 = _pts1.getMat();
|
||||
Mat pts2 = _pts2.getMat();
|
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0));
|
||||
CV_Assert(_matches.size()>1);
|
||||
|
||||
if (pts1.type() != CV_32F)
|
||||
pts1.convertTo(pts1, CV_32F);
|
||||
if (pts2.type() != CV_32F)
|
||||
pts2.convertTo(pts2, CV_32F);
|
||||
|
||||
// Use only valid matchings //
|
||||
std::vector<DMatch> matches;
|
||||
for (size_t i=0; i<_matches.size(); i++)
|
||||
{
|
||||
if (_matches[i].queryIdx<pts1.cols &&
|
||||
_matches[i].trainIdx<pts2.cols)
|
||||
{
|
||||
matches.push_back(_matches[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Organizing the correspondent points in matrix style //
|
||||
Mat shape1((int)matches.size(),2,CV_32F); // transforming shape
|
||||
Mat shape2((int)matches.size(),2,CV_32F); // target shape
|
||||
for (int i=0, end = (int)matches.size(); i<end; i++)
|
||||
{
|
||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx);
|
||||
shape1.at<float>(i,0) = pt1.x;
|
||||
shape1.at<float>(i,1) = pt1.y;
|
||||
|
||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx);
|
||||
shape2.at<float>(i,0) = pt2.x;
|
||||
shape2.at<float>(i,1) = pt2.y;
|
||||
}
|
||||
shape1.copyTo(shapeReference);
|
||||
|
||||
// Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]}
|
||||
|
||||
//Building K and P (Needed to build L)
|
||||
Mat matK((int)matches.size(),(int)matches.size(),CV_32F);
|
||||
Mat matP((int)matches.size(),3,CV_32F);
|
||||
for (int i=0, end=(int)matches.size(); i<end; i++)
|
||||
{
|
||||
for (int j=0; j<end; j++)
|
||||
{
|
||||
if (i==j)
|
||||
{
|
||||
matK.at<float>(i,j)=float(regularizationParameter);
|
||||
}
|
||||
else
|
||||
{
|
||||
matK.at<float>(i,j) = distance(Point2f(shape1.at<float>(i,0),shape1.at<float>(i,1)),
|
||||
Point2f(shape1.at<float>(j,0),shape1.at<float>(j,1)));
|
||||
}
|
||||
}
|
||||
matP.at<float>(i,0) = 1;
|
||||
matP.at<float>(i,1) = shape1.at<float>(i,0);
|
||||
matP.at<float>(i,2) = shape1.at<float>(i,1);
|
||||
}
|
||||
|
||||
//Building L
|
||||
Mat matL=Mat::zeros((int)matches.size()+3,(int)matches.size()+3,CV_32F);
|
||||
Mat matLroi(matL, Rect(0,0,(int)matches.size(),(int)matches.size())); //roi for K
|
||||
matK.copyTo(matLroi);
|
||||
matLroi = Mat(matL,Rect((int)matches.size(),0,3,(int)matches.size())); //roi for P
|
||||
matP.copyTo(matLroi);
|
||||
Mat matPt;
|
||||
transpose(matP,matPt);
|
||||
matLroi = Mat(matL,Rect(0,(int)matches.size(),(int)matches.size(),3)); //roi for P'
|
||||
matPt.copyTo(matLroi);
|
||||
|
||||
//Building B (v|0)
|
||||
Mat matB = Mat::zeros((int)matches.size()+3,2,CV_32F);
|
||||
for (int i=0, end = (int)matches.size(); i<end; i++)
|
||||
{
|
||||
matB.at<float>(i,0) = shape2.at<float>(i,0); //x's
|
||||
matB.at<float>(i,1) = shape2.at<float>(i,1); //y's
|
||||
}
|
||||
|
||||
//Obtaining transformation params (w|a)
|
||||
solve(matL, matB, tpsParameters, DECOMP_LU);
|
||||
//tpsParameters = matL.inv()*matB;
|
||||
|
||||
//Setting transform Cost and Shape reference
|
||||
Mat w(tpsParameters, Rect(0,0,2,tpsParameters.rows-3));
|
||||
Mat Q=w.t()*matK*w;
|
||||
transformCost=fabs(Q.at<float>(0,0)*Q.at<float>(1,1));//fabs(mean(Q.diag(0))[0]);//std::max(Q.at<float>(0,0),Q.at<float>(1,1));
|
||||
tpsComputed=true;
|
||||
}
|
||||
|
||||
Ptr <ThinPlateSplineShapeTransformer> createThinPlateSplineShapeTransformer(double regularizationParameter)
|
||||
{
|
||||
return Ptr<ThinPlateSplineShapeTransformer>( new ThinPlateSplineShapeTransformerImpl(regularizationParameter) );
|
||||
}
|
||||
|
||||
} // cv
|
@ -1,10 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#if defined(HAVE_HPX)
|
||||
#include <hpx/hpx_main.hpp>
|
||||
#endif
|
||||
|
||||
CV_TEST_MAIN("cv")
|
@ -1,10 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__
|
||||
#define __OPENCV_TEST_PRECOMP_HPP__
|
||||
|
||||
#include "opencv2/ts.hpp"
|
||||
#include "opencv2/shape.hpp"
|
||||
|
||||
#endif
|
@ -1,324 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
template <typename T, typename compute>
|
||||
class ShapeBaseTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
typedef Point_<T> PointType;
|
||||
ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR)
|
||||
: NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR)
|
||||
{
|
||||
// generate file list
|
||||
vector<string> shapeNames;
|
||||
shapeNames.push_back("apple"); //ok
|
||||
shapeNames.push_back("children"); // ok
|
||||
shapeNames.push_back("device7"); // ok
|
||||
shapeNames.push_back("Heart"); // ok
|
||||
shapeNames.push_back("teddy"); // ok
|
||||
for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i)
|
||||
{
|
||||
for (int j = 0; j < NSN; ++j)
|
||||
{
|
||||
std::stringstream filename;
|
||||
filename << cvtest::TS::ptr()->get_data_path()
|
||||
<< "shape/mpeg_test/" << *i << "-" << j + 1 << ".png";
|
||||
filenames.push_back(filename.str());
|
||||
}
|
||||
}
|
||||
// distance matrix
|
||||
const int totalCount = (int)filenames.size();
|
||||
distanceMat = Mat::zeros(totalCount, totalCount, CV_32F);
|
||||
}
|
||||
|
||||
protected:
|
||||
void run(int)
|
||||
{
|
||||
mpegTest();
|
||||
displayMPEGResults();
|
||||
}
|
||||
|
||||
vector<PointType> convertContourType(const Mat& currentQuery) const
|
||||
{
|
||||
if (currentQuery.empty()) {
|
||||
return vector<PointType>();
|
||||
}
|
||||
vector<vector<Point> > _contoursQuery;
|
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
|
||||
|
||||
vector <PointType> contoursQuery;
|
||||
for (size_t border=0; border<_contoursQuery.size(); border++)
|
||||
{
|
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++)
|
||||
{
|
||||
contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x,
|
||||
(T)_contoursQuery[border][p].y));
|
||||
}
|
||||
}
|
||||
|
||||
// In case actual number of points is less than n
|
||||
for (int add=(int)contoursQuery.size()-1; add<NP; add++)
|
||||
{
|
||||
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
||||
}
|
||||
|
||||
// Uniformly sampling
|
||||
cv::randShuffle(contoursQuery);
|
||||
int nStart=NP;
|
||||
vector<PointType> cont;
|
||||
for (int i=0; i<nStart; i++)
|
||||
{
|
||||
cont.push_back(contoursQuery[i]);
|
||||
}
|
||||
return cont;
|
||||
}
|
||||
|
||||
void mpegTest()
|
||||
{
|
||||
// query contours (normal v flipped, h flipped) and testing contour
|
||||
vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting;
|
||||
// reading query and computing its properties
|
||||
for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a)
|
||||
{
|
||||
// read current image
|
||||
int aIndex = (int)(a - filenames.begin());
|
||||
Mat currentQuery = imread(*a, IMREAD_GRAYSCALE);
|
||||
Mat flippedHQuery, flippedVQuery;
|
||||
flip(currentQuery, flippedHQuery, 0);
|
||||
flip(currentQuery, flippedVQuery, 1);
|
||||
// compute border of the query and its flipped versions
|
||||
contoursQuery1=convertContourType(currentQuery);
|
||||
contoursQuery2=convertContourType(flippedHQuery);
|
||||
contoursQuery3=convertContourType(flippedVQuery);
|
||||
// compare with all the rest of the images: testing
|
||||
for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b)
|
||||
{
|
||||
int bIndex = (int)(b - filenames.begin());
|
||||
float distance = 0;
|
||||
// skip self-comparisson
|
||||
if (a != b)
|
||||
{
|
||||
// read testing image
|
||||
Mat currentTest = imread(*b, IMREAD_GRAYSCALE);
|
||||
// compute border of the testing
|
||||
contoursTesting=convertContourType(currentTest);
|
||||
// compute shape distance
|
||||
distance = cmp(contoursQuery1, contoursQuery2,
|
||||
contoursQuery3, contoursTesting);
|
||||
}
|
||||
distanceMat.at<float>(aIndex, bIndex) = distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void displayMPEGResults()
|
||||
{
|
||||
const int FIRST_MANY=2*NSN;
|
||||
|
||||
int corrects=0;
|
||||
int divi=0;
|
||||
for (int row=0; row<distanceMat.rows; row++)
|
||||
{
|
||||
if (row%NSN==0) //another group
|
||||
{
|
||||
divi+=NSN;
|
||||
}
|
||||
for (int col=divi-NSN; col<divi; col++)
|
||||
{
|
||||
int nsmall=0;
|
||||
for (int i=0; i<distanceMat.cols; i++)
|
||||
{
|
||||
if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i))
|
||||
{
|
||||
nsmall++;
|
||||
}
|
||||
}
|
||||
if (nsmall<=FIRST_MANY)
|
||||
{
|
||||
corrects++;
|
||||
}
|
||||
}
|
||||
}
|
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows);
|
||||
std::cout << "Test result: " << porc << "%" << std::endl;
|
||||
if (porc >= CURRENT_MAX_ACCUR)
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
else
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
|
||||
protected:
|
||||
int NSN;
|
||||
int NP;
|
||||
float CURRENT_MAX_ACCUR;
|
||||
vector<string> filenames;
|
||||
Mat distanceMat;
|
||||
compute cmp;
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// Test Shape_SCD.regression
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
class computeShapeDistance_Chi
|
||||
{
|
||||
Ptr <ShapeContextDistanceExtractor> mysc;
|
||||
public:
|
||||
computeShapeDistance_Chi()
|
||||
{
|
||||
const int angularBins=12;
|
||||
const int radialBins=4;
|
||||
const float minRad=0.2f;
|
||||
const float maxRad=2;
|
||||
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
|
||||
mysc->setIterations(1);
|
||||
mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f));
|
||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
|
||||
}
|
||||
float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
|
||||
vector <Point2f>& query3, vector <Point2f>& testq)
|
||||
{
|
||||
return std::min(mysc->computeDistance(query1, testq),
|
||||
std::min(mysc->computeDistance(query2, testq),
|
||||
mysc->computeDistance(query3, testq)));
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Shape_SCD, regression)
|
||||
{
|
||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
||||
const int NP_val=120; //number of points simplifying the contour
|
||||
const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
|
||||
ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// Test ShapeEMD_SCD.regression
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
class computeShapeDistance_EMD
|
||||
{
|
||||
Ptr <ShapeContextDistanceExtractor> mysc;
|
||||
public:
|
||||
computeShapeDistance_EMD()
|
||||
{
|
||||
const int angularBins=12;
|
||||
const int radialBins=4;
|
||||
const float minRad=0.2f;
|
||||
const float maxRad=2;
|
||||
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad);
|
||||
mysc->setIterations(1);
|
||||
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() );
|
||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() );
|
||||
}
|
||||
float operator()(vector <Point2f>& query1, vector <Point2f>& query2,
|
||||
vector <Point2f>& query3, vector <Point2f>& testq)
|
||||
{
|
||||
return std::min(mysc->computeDistance(query1, testq),
|
||||
std::min(mysc->computeDistance(query2, testq),
|
||||
mysc->computeDistance(query3, testq)));
|
||||
}
|
||||
};
|
||||
|
||||
TEST(ShapeEMD_SCD, regression)
|
||||
{
|
||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
||||
const int NP_val=100; //number of points simplifying the contour
|
||||
const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
|
||||
ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// Test Hauss.regression
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
class computeShapeDistance_Haussdorf
|
||||
{
|
||||
Ptr <HausdorffDistanceExtractor> haus;
|
||||
public:
|
||||
computeShapeDistance_Haussdorf()
|
||||
{
|
||||
haus = createHausdorffDistanceExtractor();
|
||||
}
|
||||
float operator()(vector<Point> &query1, vector<Point> &query2,
|
||||
vector<Point> &query3, vector<Point> &testq)
|
||||
{
|
||||
return std::min(haus->computeDistance(query1,testq),
|
||||
std::min(haus->computeDistance(query2,testq),
|
||||
haus->computeDistance(query3,testq)));
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Hauss, regression)
|
||||
{
|
||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
||||
const int NP_val = 180; //number of points simplifying the contour
|
||||
const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
|
||||
ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(computeDistance, regression_4976)
|
||||
{
|
||||
Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0);
|
||||
Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0);
|
||||
|
||||
vector<vector<Point> > ca,cb;
|
||||
findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
||||
findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
||||
|
||||
Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor();
|
||||
Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor();
|
||||
|
||||
double d1 = hd->computeDistance(ca[0],cb[0]);
|
||||
double d2 = sd->computeDistance(ca[0],cb[0]);
|
||||
|
||||
EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor";
|
||||
EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor";
|
||||
}
|
||||
|
||||
}} // namespace
|
@ -15,7 +15,6 @@ set(OPENCV_CPP_SAMPLES_REQUIRED_DEPS
|
||||
opencv_calib3d
|
||||
opencv_stitching
|
||||
opencv_videostab
|
||||
opencv_shape
|
||||
${OPENCV_MODULES_PUBLIC}
|
||||
${OpenCV_LIB_COMPONENTS})
|
||||
ocv_check_dependencies(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
|
@ -1,121 +0,0 @@
|
||||
/*
|
||||
* shape_context.cpp -- Shape context demo for shape matching
|
||||
*/
|
||||
|
||||
#include "opencv2/shape.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf("\n"
|
||||
"This program demonstrates a method for shape comparison based on Shape Context\n"
|
||||
"You should run the program providing a number between 1 and 20 for selecting an image in the folder ../data/shape_sample.\n"
|
||||
"Call\n"
|
||||
"./shape_example [number between 1 and 20, 1 default]\n\n");
|
||||
}
|
||||
|
||||
static vector<Point> simpleContour( const Mat& currentQuery, int n=300 )
|
||||
{
|
||||
vector<vector<Point> > _contoursQuery;
|
||||
vector <Point> contoursQuery;
|
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
|
||||
for (size_t border=0; border<_contoursQuery.size(); border++)
|
||||
{
|
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++)
|
||||
{
|
||||
contoursQuery.push_back( _contoursQuery[border][p] );
|
||||
}
|
||||
}
|
||||
|
||||
// In case actual number of points is less than n
|
||||
int dummy=0;
|
||||
for (int add=(int)contoursQuery.size()-1; add<n; add++)
|
||||
{
|
||||
contoursQuery.push_back(contoursQuery[dummy++]); //adding dummy values
|
||||
}
|
||||
|
||||
// Uniformly sampling
|
||||
cv::randShuffle(contoursQuery);
|
||||
vector<Point> cont;
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
cont.push_back(contoursQuery[i]);
|
||||
}
|
||||
return cont;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
string path = "../data/shape_sample/";
|
||||
cv::CommandLineParser parser(argc, argv, "{help h||}{@input|1|}");
|
||||
if (parser.has("help"))
|
||||
{
|
||||
help();
|
||||
return 0;
|
||||
}
|
||||
int indexQuery = parser.get<int>("@input");
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
help();
|
||||
return 1;
|
||||
}
|
||||
if (indexQuery < 1 || indexQuery > 20)
|
||||
{
|
||||
help();
|
||||
return 1;
|
||||
}
|
||||
cv::Ptr <cv::ShapeContextDistanceExtractor> mysc = cv::createShapeContextDistanceExtractor();
|
||||
|
||||
Size sz2Sh(300,300);
|
||||
stringstream queryName;
|
||||
queryName<<path<<indexQuery<<".png";
|
||||
Mat query=imread(queryName.str(), IMREAD_GRAYSCALE);
|
||||
Mat queryToShow;
|
||||
resize(query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("QUERY", queryToShow);
|
||||
moveWindow("TEST", 0,0);
|
||||
vector<Point> contQuery = simpleContour(query);
|
||||
int bestMatch = 0;
|
||||
float bestDis=FLT_MAX;
|
||||
for ( int ii=1; ii<=20; ii++ )
|
||||
{
|
||||
if (ii==indexQuery) continue;
|
||||
waitKey(30);
|
||||
stringstream iiname;
|
||||
iiname<<path<<ii<<".png";
|
||||
cout<<"name: "<<iiname.str()<<endl;
|
||||
Mat iiIm=imread(iiname.str(), 0);
|
||||
Mat iiToShow;
|
||||
resize(iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("TEST", iiToShow);
|
||||
moveWindow("TEST", sz2Sh.width+50,0);
|
||||
vector<Point> contii = simpleContour(iiIm);
|
||||
float dis = mysc->computeDistance( contQuery, contii );
|
||||
if ( dis<bestDis )
|
||||
{
|
||||
bestMatch = ii;
|
||||
bestDis = dis;
|
||||
}
|
||||
std::cout<<" distance between "<<queryName.str()<<" and "<<iiname.str()<<" is: "<<dis<<std::endl;
|
||||
}
|
||||
destroyWindow("TEST");
|
||||
stringstream bestname;
|
||||
bestname<<path<<bestMatch<<".png";
|
||||
Mat iiIm=imread(bestname.str(), 0);
|
||||
Mat bestToShow;
|
||||
resize(iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("BEST MATCH", bestToShow);
|
||||
moveWindow("BEST MATCH", sz2Sh.width+50,0);
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
Before Width: | Height: | Size: 705 B |
Before Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 722 B |
Before Width: | Height: | Size: 437 B |
Before Width: | Height: | Size: 443 B |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 803 B |
Before Width: | Height: | Size: 830 B |
Before Width: | Height: | Size: 3.0 KiB |
Before Width: | Height: | Size: 3.2 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 813 B |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 2.4 KiB |
Before Width: | Height: | Size: 852 B |
Before Width: | Height: | Size: 969 B |
Before Width: | Height: | Size: 874 B |
Before Width: | Height: | Size: 851 B |
Before Width: | Height: | Size: 1.2 KiB |