mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
fixed #1507
This commit is contained in:
parent
ec5bdc7de8
commit
1494da339d
@ -96,7 +96,9 @@ Code
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/** @function main */
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src, dst;
|
||||
@ -107,49 +109,49 @@ Code
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Separate the image in 3 places ( R, G and B )
|
||||
vector<Mat> rgb_planes;
|
||||
split( src, rgb_planes );
|
||||
/// Separate the image in 3 places ( B, G and R )
|
||||
vector<Mat> bgr_planes;
|
||||
split( src, bgr_planes );
|
||||
|
||||
/// Establish the number of bins
|
||||
int histSize = 255;
|
||||
int histSize = 256;
|
||||
|
||||
/// Set the ranges ( for R,G,B) )
|
||||
float range[] = { 0, 255 } ;
|
||||
/// Set the ranges ( for B,G,R) )
|
||||
float range[] = { 0, 256 } ;
|
||||
const float* histRange = { range };
|
||||
|
||||
bool uniform = true; bool accumulate = false;
|
||||
|
||||
Mat r_hist, g_hist, b_hist;
|
||||
Mat b_hist, g_hist, r_hist;
|
||||
|
||||
/// Compute the histograms:
|
||||
calcHist( &rgb_planes[0], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[2], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
|
||||
// Draw the histograms for R, G and B
|
||||
int hist_w = 400; int hist_h = 400;
|
||||
// Draw the histograms for B, G and R
|
||||
int hist_w = 512; int hist_h = 400;
|
||||
int bin_w = cvRound( (double) hist_w/histSize );
|
||||
|
||||
Mat histImage( hist_w, hist_h, CV_8UC3, Scalar( 0,0,0) );
|
||||
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
|
||||
|
||||
/// Normalize the result to [ 0, histImage.rows ]
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
|
||||
/// Draw for each channel
|
||||
for( int i = 1; i < histSize; i++ )
|
||||
{
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
|
||||
Scalar( 255, 0, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
}
|
||||
|
||||
/// Display
|
||||
@ -159,7 +161,6 @@ Code
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
Explanation
|
||||
@ -184,25 +185,25 @@ Explanation
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
vector<Mat> rgb_planes;
|
||||
split( src, rgb_planes );
|
||||
vector<Mat> bgr_planes;
|
||||
split( src, bgr_planes );
|
||||
|
||||
our input is the image to be divided (this case with three channels) and the output is a vector of Mat )
|
||||
|
||||
#. Now we are ready to start configuring the **histograms** for each plane. Since we are working with the R, G and B planes, we know that our values will range in the interval :math:`[0,255]`
|
||||
#. Now we are ready to start configuring the **histograms** for each plane. Since we are working with the B, G and R planes, we know that our values will range in the interval :math:`[0,255]`
|
||||
|
||||
a. Establish number of bins (5, 10...):
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
int histSize = 255;
|
||||
int histSize = 256; //from 0 to 255
|
||||
|
||||
b. Set the range of values (as we said, between 0 and 255 )
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/// Set the ranges ( for R,G,B) )
|
||||
float range[] = { 0, 255 } ;
|
||||
/// Set the ranges ( for B,G,R) )
|
||||
float range[] = { 0, 256 } ; //the upper boundary is exclusive
|
||||
const float* histRange = { range };
|
||||
|
||||
c. We want our bins to have the same size (uniform) and to clear the histograms in the beginning, so:
|
||||
@ -215,26 +216,26 @@ Explanation
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
Mat r_hist, g_hist, b_hist;
|
||||
Mat b_hist, g_hist, r_hist;
|
||||
|
||||
e. We proceed to calculate the histograms by using the OpenCV function :calc_hist:`calcHist <>`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/// Compute the histograms:
|
||||
calcHist( &rgb_planes[0], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[2], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
|
||||
where the arguments are:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ **&rgb_planes[0]:** The source array(s)
|
||||
+ **&bgr_planes[0]:** The source array(s)
|
||||
+ **1**: The number of source arrays (in this case we are using 1. We can enter here also a list of arrays )
|
||||
+ **0**: The channel (*dim*) to be measured. In this case it is just the intensity (each array is single-channel) so we just write 0.
|
||||
+ **Mat()**: A mask to be used on the source array ( zeros indicating pixels to be ignored ). If not defined it is not used
|
||||
+ **r_hist**: The Mat object where the histogram will be stored
|
||||
+ **b_hist**: The Mat object where the histogram will be stored
|
||||
+ **1**: The histogram dimensionality.
|
||||
+ **histSize:** The number of bins per each used dimension
|
||||
+ **histRange:** The range of values to be measured per each dimension
|
||||
@ -246,26 +247,26 @@ Explanation
|
||||
.. code-block:: cpp
|
||||
|
||||
// Draw the histograms for R, G and B
|
||||
int hist_w = 400; int hist_h = 400;
|
||||
int hist_w = 512; int hist_h = 400;
|
||||
int bin_w = cvRound( (double) hist_w/histSize );
|
||||
|
||||
Mat histImage( hist_w, hist_h, CV_8UC3, Scalar( 0,0,0) );
|
||||
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
|
||||
|
||||
#. Notice that before drawing, we first :normalize:`normalize <>` the histogram so its values fall in the range indicated by the parameters entered:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/// Normalize the result to [ 0, histImage.rows ]
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
|
||||
this function receives these arguments:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
+ **r_hist:** Input array
|
||||
+ **r_hist:** Output normalized array (can be the same)
|
||||
+ **b_hist:** Input array
|
||||
+ **b_hist:** Output normalized array (can be the same)
|
||||
+ **0** and**histImage.rows**: For this example, they are the lower and upper limits to normalize the values of **r_hist**
|
||||
+ **NORM_MINMAX:** Argument that indicates the type of normalization (as described above, it adjusts the values between the two limits set before)
|
||||
+ **-1:** Implies that the output normalized array will be the same type as the input
|
||||
@ -278,15 +279,15 @@ Explanation
|
||||
/// Draw for each channel
|
||||
for( int i = 1; i < histSize; i++ )
|
||||
{
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
|
||||
Scalar( 255, 0, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
}
|
||||
|
||||
|
||||
@ -294,14 +295,14 @@ Explanation
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
r_hist.at<float>(i)
|
||||
b_hist.at<float>(i)
|
||||
|
||||
|
||||
where :math:`i` indicates the dimension. If it were a 2D-histogram we would use something like:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
r_hist.at<float>( i, j )
|
||||
b_hist.at<float>( i, j )
|
||||
|
||||
|
||||
#. Finally we display our histograms and wait for the user to exit:
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 9.9 KiB After Width: | Height: | Size: 30 KiB |
@ -25,49 +25,49 @@ int main( int argc, char** argv )
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Separate the image in 3 places ( R, G and B )
|
||||
vector<Mat> rgb_planes;
|
||||
split( src, rgb_planes );
|
||||
/// Separate the image in 3 places ( B, G and R )
|
||||
vector<Mat> bgr_planes;
|
||||
split( src, bgr_planes );
|
||||
|
||||
/// Establish the number of bins
|
||||
int histSize = 255;
|
||||
int histSize = 256;
|
||||
|
||||
/// Set the ranges ( for R,G,B) )
|
||||
float range[] = { 0, 255 } ;
|
||||
/// Set the ranges ( for B,G,R) )
|
||||
float range[] = { 0, 256 } ;
|
||||
const float* histRange = { range };
|
||||
|
||||
bool uniform = true; bool accumulate = false;
|
||||
|
||||
Mat r_hist, g_hist, b_hist;
|
||||
Mat b_hist, g_hist, r_hist;
|
||||
|
||||
/// Compute the histograms:
|
||||
calcHist( &rgb_planes[0], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &rgb_planes[2], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
|
||||
// Draw the histograms for R, G and B
|
||||
int hist_w = 400; int hist_h = 400;
|
||||
// Draw the histograms for B, G and R
|
||||
int hist_w = 512; int hist_h = 400;
|
||||
int bin_w = cvRound( (double) hist_w/histSize );
|
||||
|
||||
Mat histImage( hist_w, hist_h, CV_8UC3, Scalar( 0,0,0) );
|
||||
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
|
||||
|
||||
/// Normalize the result to [ 0, histImage.rows ]
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
|
||||
|
||||
/// Draw for each channel
|
||||
for( int i = 1; i < histSize; i++ )
|
||||
{
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
|
||||
Scalar( 255, 0, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
|
||||
Scalar( 0, 255, 0), 2, 8, 0 );
|
||||
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
|
||||
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
|
||||
Scalar( 0, 0, 255), 2, 8, 0 );
|
||||
}
|
||||
|
||||
/// Display
|
||||
|
Loading…
Reference in New Issue
Block a user