mirror of
https://github.com/opencv/opencv.git
synced 2025-07-31 01:47:12 +08:00
Merge pull request #26347 from gursimarsingh:updated_dnn_samples
Updated segmentation sample as per current update usage and engine #26347 This PR updates segmentation sample as per new usage, and change their DNN engines. It adds usage of findModel, dynamic fontsize, etc. in segmentation sample. The PR makes the sample consistent with other dnn samples ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
a7bb17b092
commit
1ae304bb83
@ -12,81 +12,176 @@ using namespace cv;
|
||||
using namespace std;
|
||||
using namespace dnn;
|
||||
|
||||
const string about =
|
||||
"Use this script to run semantic segmentation deep learning networks using OpenCV.\n\n"
|
||||
"Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
|
||||
"To run:\n"
|
||||
"\t ./example_dnn_classification modelName(e.g. u2netp) --input=$OPENCV_SAMPLES_DATA_PATH/butterfly.jpg (or ignore this argument to use device camera)\n"
|
||||
"Model path can also be specified using --model argument.";
|
||||
|
||||
const string param_keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
||||
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
||||
"{ device | 0 | camera device number. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
||||
"{ classes | | Optional path to a text file with names of classes. }"
|
||||
"{ colors | | Optional path to a text file with colors for an every class. "
|
||||
"{ help h | | Print help message. }"
|
||||
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
||||
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
|
||||
"{ device | 0 | camera device number. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
||||
"{ colors | | Optional path to a text file with colors for an every class. "
|
||||
"Every color is represented with three values from 0 to 255 in BGR channels order. }";
|
||||
|
||||
const string backend_keys = format(
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA }",
|
||||
DNN_BACKEND_DEFAULT, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM, DNN_BACKEND_CUDA);
|
||||
"{ backend | default | Choose one of computation backends: "
|
||||
"default: automatically (by default), "
|
||||
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"opencv: OpenCV implementation, "
|
||||
"vkcom: VKCOM, "
|
||||
"cuda: CUDA, "
|
||||
"webnn: WebNN }");
|
||||
|
||||
const string target_keys = format(
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"%d: CPU target (by default), "
|
||||
"%d: OpenCL, "
|
||||
"%d: OpenCL fp16 (half-float precision), "
|
||||
"%d: VPU, "
|
||||
"%d: Vulkan, "
|
||||
"%d: CUDA, "
|
||||
"%d: CUDA fp16 (half-float preprocess) }",
|
||||
DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, DNN_TARGET_CUDA, DNN_TARGET_CUDA_FP16);
|
||||
"{ target | cpu | Choose one of target computation devices: "
|
||||
"cpu: CPU target (by default), "
|
||||
"opencl: OpenCL, "
|
||||
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
||||
"vpu: VPU, "
|
||||
"vulkan: Vulkan, "
|
||||
"cuda: CUDA, "
|
||||
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
|
||||
|
||||
string keys = param_keys + backend_keys + target_keys;
|
||||
vector<string> classes;
|
||||
vector<string> labels;
|
||||
vector<Vec3b> colors;
|
||||
|
||||
void showLegend();
|
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm);
|
||||
static void colorizeSegmentation(const Mat &score, Mat &segm)
|
||||
{
|
||||
const int rows = score.size[2];
|
||||
const int cols = score.size[3];
|
||||
const int chns = score.size[1];
|
||||
|
||||
if (colors.empty())
|
||||
{
|
||||
// Generate colors.
|
||||
colors.push_back(Vec3b());
|
||||
for (int i = 1; i < chns; ++i)
|
||||
{
|
||||
Vec3b color;
|
||||
for (int j = 0; j < 3; ++j)
|
||||
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
|
||||
colors.push_back(color);
|
||||
}
|
||||
}
|
||||
else if (chns != (int)colors.size())
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output labels does not match "
|
||||
"number of colors (%d != %zu)",
|
||||
chns, colors.size()));
|
||||
}
|
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
||||
Mat maxVal(rows, cols, CV_32FC1, score.data);
|
||||
for (int ch = 1; ch < chns; ch++)
|
||||
{
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const float *ptrScore = score.ptr<float>(0, ch, row);
|
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
||||
float *ptrMaxVal = maxVal.ptr<float>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
if (ptrScore[col] > ptrMaxVal[col])
|
||||
{
|
||||
ptrMaxVal[col] = ptrScore[col];
|
||||
ptrMaxCl[col] = (uchar)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
segm.create(rows, cols, CV_8UC3);
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
ptrSegm[col] = colors[ptrMaxCl[col]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void showLegend(FontFace fontFace)
|
||||
{
|
||||
static const int kBlockHeight = 30;
|
||||
static Mat legend;
|
||||
if (legend.empty())
|
||||
{
|
||||
const int numClasses = (int)labels.size();
|
||||
if ((int)colors.size() != numClasses)
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output labels does not match "
|
||||
"number of labels (%zu != %zu)",
|
||||
colors.size(), labels.size()));
|
||||
}
|
||||
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
|
||||
for (int i = 0; i < numClasses; i++)
|
||||
{
|
||||
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
|
||||
block.setTo(colors[i]);
|
||||
Rect r = getTextSize(Size(), labels[i], Point(), fontFace, 15, 400);
|
||||
r.height += 15; // padding
|
||||
r.width += 10; // padding
|
||||
rectangle(block, r, Scalar::all(255), FILLED);
|
||||
putText(block, labels[i], Point(10, kBlockHeight/2), Scalar(0,0,0), fontFace, 15, 400);
|
||||
}
|
||||
namedWindow("Legend", WINDOW_AUTOSIZE);
|
||||
imshow("Legend", legend);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
const string modelName = parser.get<String>("@alias");
|
||||
const string zooFile = parser.get<String>("zoo");
|
||||
const string zooFile = findFile(parser.get<String>("zoo"));
|
||||
|
||||
keys += genPreprocArguments(modelName, zooFile);
|
||||
|
||||
parser = CommandLineParser(argc, argv, keys);
|
||||
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
|
||||
if (argc == 1 || parser.has("help"))
|
||||
parser.about(about);
|
||||
if (!parser.has("@alias") || parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
string sha1 = parser.get<String>("sha1");
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = findFile(parser.get<String>("model"));
|
||||
int backendId = parser.get<int>("backend");
|
||||
int targetId = parser.get<int>("target");
|
||||
String model = findModel(parser.get<String>("model"), sha1);
|
||||
const string backend = parser.get<String>("backend");
|
||||
const string target = parser.get<String>("target");
|
||||
int stdSize = 20;
|
||||
int stdWeight = 400;
|
||||
int stdImgSize = 512;
|
||||
int imgWidth = -1; // Initialization
|
||||
int fontSize = 50;
|
||||
int fontWeight = 500;
|
||||
FontFace fontFace("sans");
|
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes"))
|
||||
// Open file with labels names.
|
||||
if (parser.has("labels"))
|
||||
{
|
||||
string file = findFile(parser.get<String>("classes"));
|
||||
string file = findFile(parser.get<String>("labels"));
|
||||
ifstream ifs(file.c_str());
|
||||
if (!ifs.is_open())
|
||||
CV_Error(Error::StsError, "File " + file + " not found");
|
||||
string line;
|
||||
while (getline(ifs, line))
|
||||
{
|
||||
classes.push_back(line);
|
||||
labels.push_back(line);
|
||||
}
|
||||
}
|
||||
// Open file with colors.
|
||||
@ -116,13 +211,17 @@ int main(int argc, char **argv)
|
||||
|
||||
CV_Assert(!model.empty());
|
||||
//! [Read and initialize network]
|
||||
Net net = readNetFromONNX(model);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
EngineType engine = ENGINE_AUTO;
|
||||
if (backend != "default" || target != "cpu"){
|
||||
engine = ENGINE_CLASSIC;
|
||||
}
|
||||
Net net = readNetFromONNX(model, engine);
|
||||
net.setPreferableBackend(getBackendID(backend));
|
||||
net.setPreferableTarget(getTargetID(target));
|
||||
//! [Read and initialize network]
|
||||
// Create a window
|
||||
static const string kWinName = "Deep learning semantic segmentation in OpenCV";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
namedWindow(kWinName, WINDOW_AUTOSIZE);
|
||||
|
||||
//! [Open a video file or an image file or a camera stream]
|
||||
VideoCapture cap;
|
||||
@ -141,6 +240,11 @@ int main(int argc, char **argv)
|
||||
waitKey();
|
||||
break;
|
||||
}
|
||||
if (imgWidth == -1){
|
||||
imgWidth = max(frame.rows, frame.cols);
|
||||
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize);
|
||||
fontWeight = min(fontWeight, (stdWeight*imgWidth)/stdImgSize);
|
||||
}
|
||||
imshow("Original Image", frame);
|
||||
//! [Create a 4D blob from a frame]
|
||||
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
|
||||
@ -185,92 +289,15 @@ int main(int argc, char **argv)
|
||||
double freq = getTickFrequency() / 1000;
|
||||
double t = net.getPerfProfile(layersTimes) / freq;
|
||||
string label = format("Inference time: %.2f ms", t);
|
||||
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
Rect r = getTextSize(Size(), label, Point(), fontFace, fontSize, fontWeight);
|
||||
r.height += fontSize; // padding
|
||||
r.width += 10; // padding
|
||||
rectangle(frame, r, Scalar::all(255), FILLED);
|
||||
putText(frame, label, Point(10, fontSize), Scalar(0,0,0), fontFace, fontSize, fontWeight);
|
||||
|
||||
imshow(kWinName, frame);
|
||||
if (!classes.empty())
|
||||
showLegend();
|
||||
if (!labels.empty())
|
||||
showLegend(fontFace);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm)
|
||||
{
|
||||
const int rows = score.size[2];
|
||||
const int cols = score.size[3];
|
||||
const int chns = score.size[1];
|
||||
|
||||
if (colors.empty())
|
||||
{
|
||||
// Generate colors.
|
||||
colors.push_back(Vec3b());
|
||||
for (int i = 1; i < chns; ++i)
|
||||
{
|
||||
Vec3b color;
|
||||
for (int j = 0; j < 3; ++j)
|
||||
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
|
||||
colors.push_back(color);
|
||||
}
|
||||
}
|
||||
else if (chns != (int)colors.size())
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output classes does not match "
|
||||
"number of colors (%d != %zu)",
|
||||
chns, colors.size()));
|
||||
}
|
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
||||
Mat maxVal(rows, cols, CV_32FC1, score.data);
|
||||
for (int ch = 1; ch < chns; ch++)
|
||||
{
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const float *ptrScore = score.ptr<float>(0, ch, row);
|
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
||||
float *ptrMaxVal = maxVal.ptr<float>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
if (ptrScore[col] > ptrMaxVal[col])
|
||||
{
|
||||
ptrMaxVal[col] = ptrScore[col];
|
||||
ptrMaxCl[col] = (uchar)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
segm.create(rows, cols, CV_8UC3);
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
ptrSegm[col] = colors[ptrMaxCl[col]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void showLegend()
|
||||
{
|
||||
static const int kBlockHeight = 30;
|
||||
static Mat legend;
|
||||
if (legend.empty())
|
||||
{
|
||||
const int numClasses = (int)classes.size();
|
||||
if ((int)colors.size() != numClasses)
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output classes does not match "
|
||||
"number of labels (%zu != %zu)",
|
||||
colors.size(), classes.size()));
|
||||
}
|
||||
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
|
||||
for (int i = 0; i < numClasses; i++)
|
||||
{
|
||||
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
|
||||
block.setTo(colors[i]);
|
||||
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
|
||||
}
|
||||
namedWindow("Legend", WINDOW_NORMAL);
|
||||
imshow("Legend", legend);
|
||||
}
|
||||
}
|
||||
|
@ -1,140 +1,176 @@
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
from common import *
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
|
||||
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
def help():
|
||||
print(
|
||||
'''
|
||||
Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"\n
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
help='An optional path to file with preprocessing parameters.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
||||
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
To run:
|
||||
python segmentation.py model_name(e.g. u2netp) --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
||||
|
||||
Model path can also be specified using --model argument
|
||||
'''
|
||||
)
|
||||
|
||||
def get_args_parser(func_args):
|
||||
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
||||
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
help='An optional path to file with preprocessing parameters.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
||||
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
||||
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA"% backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)'% targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'segmentation')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
args = parser.parse_args()
|
||||
"default: automatically (by default), "
|
||||
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"opencv: OpenCV implementation, "
|
||||
"vkcom: VKCOM, "
|
||||
"cuda: CUDA, "
|
||||
"webnn: WebNN")
|
||||
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
||||
help="Choose one of target computation devices: "
|
||||
"cpu: CPU target (by default), "
|
||||
"opencl: OpenCL, "
|
||||
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
||||
"ncs2_vpu: NCS2 VPU, "
|
||||
"hddl_vpu: HDDL VPU, "
|
||||
"vulkan: Vulkan, "
|
||||
"cuda: CUDA, "
|
||||
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
||||
|
||||
args.model = findFile(args.model)
|
||||
args.classes = findFile(args.classes)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'segmentation')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
return parser.parse_args(func_args)
|
||||
|
||||
np.random.seed(324)
|
||||
|
||||
# Load names of classes
|
||||
classes = None
|
||||
if args.classes:
|
||||
with open(args.classes, 'rt') as f:
|
||||
classes = f.read().rstrip('\n').split('\n')
|
||||
|
||||
# Load colors
|
||||
colors = None
|
||||
if args.colors:
|
||||
with open(args.colors, 'rt') as f:
|
||||
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
|
||||
|
||||
legend = None
|
||||
def showLegend(classes):
|
||||
global legend
|
||||
if not classes is None and legend is None:
|
||||
def showLegend(labels, colors, legend):
|
||||
if not labels is None and legend is None:
|
||||
blockHeight = 30
|
||||
assert(len(classes) == len(colors))
|
||||
assert(len(labels) == len(colors))
|
||||
|
||||
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
|
||||
for i in range(len(classes)):
|
||||
for i in range(len(labels)):
|
||||
block = legend[i * blockHeight:(i + 1) * blockHeight]
|
||||
block[:,:] = colors[i]
|
||||
cv.putText(block, classes[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
||||
cv.putText(block, labels[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
||||
|
||||
cv.namedWindow('Legend', cv.WINDOW_NORMAL)
|
||||
cv.namedWindow('Legend', cv.WINDOW_AUTOSIZE)
|
||||
cv.imshow('Legend', legend)
|
||||
classes = None
|
||||
labels = None
|
||||
|
||||
# Load a network
|
||||
net = cv.dnn.readNetFromONNX(args.model)
|
||||
net.setPreferableBackend(args.backend)
|
||||
net.setPreferableTarget(args.target)
|
||||
def main(func_args=None):
|
||||
args = get_args_parser(func_args)
|
||||
if args.alias is None or hasattr(args, 'help'):
|
||||
help()
|
||||
exit(1)
|
||||
|
||||
winName = 'Deep learning semantic segmentation in OpenCV'
|
||||
cv.namedWindow(winName, cv.WINDOW_NORMAL)
|
||||
args.model = findModel(args.model, args.sha1)
|
||||
if args.labels is not None:
|
||||
args.labels = findFile(args.labels)
|
||||
|
||||
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
|
||||
legend = None
|
||||
while cv.waitKey(1) < 0:
|
||||
hasFrame, frame = cap.read()
|
||||
if not hasFrame:
|
||||
cv.waitKey()
|
||||
break
|
||||
np.random.seed(324)
|
||||
|
||||
cv.imshow("Original Image", frame)
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
# Create a 4D blob from a frame.
|
||||
inpWidth = args.width if args.width else frameWidth
|
||||
inpHeight = args.height if args.height else frameHeight
|
||||
stdSize = 0.8
|
||||
stdWeight = 2
|
||||
stdImgSize = 512
|
||||
imgWidth = -1 # Initialization
|
||||
fontSize = 1.5
|
||||
fontThickness = 1
|
||||
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
||||
net.setInput(blob)
|
||||
# Load names of labels
|
||||
labels = None
|
||||
if args.labels:
|
||||
with open(args.labels, 'rt') as f:
|
||||
labels = f.read().rstrip('\n').split('\n')
|
||||
|
||||
if args.alias == 'u2netp':
|
||||
output = net.forward(net.getUnconnectedOutLayersNames())
|
||||
pred = output[0][0, 0, :, :]
|
||||
mask = (pred * 255).astype(np.uint8)
|
||||
mask = cv.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_AREA)
|
||||
# Create overlays for foreground and background
|
||||
foreground_overlay = np.zeros_like(frame, dtype=np.uint8)
|
||||
# Set foreground (object) to red and background to blue
|
||||
foreground_overlay[:, :, 2] = mask # Red foreground
|
||||
# Blend the overlays with the original frame
|
||||
frame = cv.addWeighted(frame, 0.25, foreground_overlay, 0.75, 0)
|
||||
else:
|
||||
score = net.forward()
|
||||
# Load colors
|
||||
colors = None
|
||||
if args.colors:
|
||||
with open(args.colors, 'rt') as f:
|
||||
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
|
||||
|
||||
numClasses = score.shape[1]
|
||||
height = score.shape[2]
|
||||
width = score.shape[3]
|
||||
# Draw segmentation
|
||||
if not colors:
|
||||
# Generate colors
|
||||
colors = [np.array([0, 0, 0], np.uint8)]
|
||||
for i in range(1, numClasses):
|
||||
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
|
||||
classIds = np.argmax(score[0], axis=0)
|
||||
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
||||
segm = segm.reshape(height, width, 3)
|
||||
# Load a network
|
||||
engine = cv.dnn.ENGINE_AUTO
|
||||
if args.backend != "default" or args.target != "cpu":
|
||||
engine = cv.dnn.ENGINE_CLASSIC
|
||||
net = cv.dnn.readNetFromONNX(args.model, engine)
|
||||
net.setPreferableBackend(get_backend_id(args.backend))
|
||||
net.setPreferableTarget(get_target_id(args.target))
|
||||
|
||||
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
|
||||
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
||||
winName = 'Deep learning semantic segmentation in OpenCV'
|
||||
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
|
||||
|
||||
showLegend(classes)
|
||||
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
|
||||
legend = None
|
||||
while cv.waitKey(1) < 0:
|
||||
hasFrame, frame = cap.read()
|
||||
if not hasFrame:
|
||||
cv.waitKey()
|
||||
break
|
||||
if imgWidth == -1:
|
||||
imgWidth = max(frame.shape[:2])
|
||||
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize)
|
||||
fontThickness = max(fontThickness,(stdWeight*imgWidth)//stdImgSize)
|
||||
|
||||
# Put efficiency information.
|
||||
t, _ = net.getPerfProfile()
|
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
cv.imshow("Original Image", frame)
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
# Create a 4D blob from a frame.
|
||||
inpWidth = args.width if args.width else frameWidth
|
||||
inpHeight = args.height if args.height else frameHeight
|
||||
|
||||
cv.imshow(winName, frame)
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
||||
net.setInput(blob)
|
||||
|
||||
if args.alias == 'u2netp':
|
||||
output = net.forward(net.getUnconnectedOutLayersNames())
|
||||
pred = output[0][0, 0, :, :]
|
||||
mask = (pred * 255).astype(np.uint8)
|
||||
mask = cv.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_AREA)
|
||||
# Create overlays for foreground and background
|
||||
foreground_overlay = np.zeros_like(frame, dtype=np.uint8)
|
||||
# Set foreground (object) to red and background to blue
|
||||
foreground_overlay[:, :, 2] = mask # Red foreground
|
||||
# Blend the overlays with the original frame
|
||||
frame = cv.addWeighted(frame, 0.25, foreground_overlay, 0.75, 0)
|
||||
else:
|
||||
score = net.forward()
|
||||
|
||||
numClasses = score.shape[1]
|
||||
height = score.shape[2]
|
||||
width = score.shape[3]
|
||||
# Draw segmentation
|
||||
if not colors:
|
||||
# Generate colors
|
||||
colors = [np.array([0, 0, 0], np.uint8)]
|
||||
for i in range(1, numClasses):
|
||||
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
|
||||
classIds = np.argmax(score[0], axis=0)
|
||||
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
||||
segm = segm.reshape(height, width, 3)
|
||||
|
||||
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
|
||||
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
||||
|
||||
showLegend(labels, colors, legend)
|
||||
|
||||
# Put efficiency information.
|
||||
t, _ = net.getPerfProfile()
|
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
||||
labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness)
|
||||
cv.rectangle(frame, (0, 0), (labelSize[0]+10, labelSize[1]), (255,255,255), cv.FILLED)
|
||||
cv.putText(frame, label, (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
|
||||
|
||||
cv.imshow(winName, frame)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user