opencv/samples/dnn/segmentation.py
Gursimar Singh 1ae304bb83
Merge pull request #26347 from gursimarsingh:updated_dnn_samples
Updated segmentation sample as per current update usage and engine #26347

This PR updates segmentation sample as per new usage, and change their DNN engines. It adds usage of findModel, dynamic fontsize, etc. in segmentation sample.

The PR makes the sample consistent with other dnn samples

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-11-08 08:55:46 +03:00

176 lines
7.5 KiB
Python

import cv2 as cv
import argparse
import numpy as np
from common import *
def help():
print(
'''
Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"\n
To run:
python segmentation.py model_name(e.g. u2netp) --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
Model path can also be specified using --model argument
'''
)
def get_args_parser(func_args):
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
'An every color is represented with three values from 0 to 255 in BGR channels order.')
parser.add_argument('--backend', default="default", type=str, choices=backends,
help="Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN")
parser.add_argument('--target', default="cpu", type=str, choices=targets,
help="Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"ncs2_vpu: NCS2 VPU, "
"hddl_vpu: HDDL VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess)")
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'segmentation')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
return parser.parse_args(func_args)
def showLegend(labels, colors, legend):
if not labels is None and legend is None:
blockHeight = 30
assert(len(labels) == len(colors))
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
for i in range(len(labels)):
block = legend[i * blockHeight:(i + 1) * blockHeight]
block[:,:] = colors[i]
cv.putText(block, labels[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
cv.namedWindow('Legend', cv.WINDOW_AUTOSIZE)
cv.imshow('Legend', legend)
labels = None
def main(func_args=None):
args = get_args_parser(func_args)
if args.alias is None or hasattr(args, 'help'):
help()
exit(1)
args.model = findModel(args.model, args.sha1)
if args.labels is not None:
args.labels = findFile(args.labels)
np.random.seed(324)
stdSize = 0.8
stdWeight = 2
stdImgSize = 512
imgWidth = -1 # Initialization
fontSize = 1.5
fontThickness = 1
# Load names of labels
labels = None
if args.labels:
with open(args.labels, 'rt') as f:
labels = f.read().rstrip('\n').split('\n')
# Load colors
colors = None
if args.colors:
with open(args.colors, 'rt') as f:
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
# Load a network
engine = cv.dnn.ENGINE_AUTO
if args.backend != "default" or args.target != "cpu":
engine = cv.dnn.ENGINE_CLASSIC
net = cv.dnn.readNetFromONNX(args.model, engine)
net.setPreferableBackend(get_backend_id(args.backend))
net.setPreferableTarget(get_target_id(args.target))
winName = 'Deep learning semantic segmentation in OpenCV'
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
legend = None
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
if imgWidth == -1:
imgWidth = max(frame.shape[:2])
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize)
fontThickness = max(fontThickness,(stdWeight*imgWidth)//stdImgSize)
cv.imshow("Original Image", frame)
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
net.setInput(blob)
if args.alias == 'u2netp':
output = net.forward(net.getUnconnectedOutLayersNames())
pred = output[0][0, 0, :, :]
mask = (pred * 255).astype(np.uint8)
mask = cv.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_AREA)
# Create overlays for foreground and background
foreground_overlay = np.zeros_like(frame, dtype=np.uint8)
# Set foreground (object) to red and background to blue
foreground_overlay[:, :, 2] = mask # Red foreground
# Blend the overlays with the original frame
frame = cv.addWeighted(frame, 0.25, foreground_overlay, 0.75, 0)
else:
score = net.forward()
numClasses = score.shape[1]
height = score.shape[2]
width = score.shape[3]
# Draw segmentation
if not colors:
# Generate colors
colors = [np.array([0, 0, 0], np.uint8)]
for i in range(1, numClasses):
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
classIds = np.argmax(score[0], axis=0)
segm = np.stack([colors[idx] for idx in classIds.flatten()])
segm = segm.reshape(height, width, 3)
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
showLegend(labels, colors, legend)
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness)
cv.rectangle(frame, (0, 0), (labelSize[0]+10, labelSize[1]), (255,255,255), cv.FILLED)
cv.putText(frame, label, (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
cv.imshow(winName, frame)
if __name__ == "__main__":
main()