mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
renamed "None()" to "noArray()" to avoid conflicts with X11 (ticket #1122)
This commit is contained in:
parent
aad9b3219c
commit
2d2b8a496e
@ -10,10 +10,10 @@ Welcome to opencv documentation!
|
||||
:maxdepth: 2
|
||||
|
||||
modules/refman.rst
|
||||
doc/opencv1/c/c_index.rst
|
||||
doc/opencv1/py/py_index.rst
|
||||
doc/user_guide/user_guide.rst
|
||||
doc/tutorials/tutorials.rst
|
||||
_doc/opencv1/c/c_index.rst
|
||||
_doc/opencv1/py/py_index.rst
|
||||
_doc/user_guide/user_guide.rst
|
||||
_doc/tutorials/tutorials.rst
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
@ -221,7 +221,7 @@ The function computes various useful camera characteristics from the previously
|
||||
composeRT
|
||||
-------------
|
||||
|
||||
.. cpp:function:: void composeRT( InputArray rvec1, InputArray tvec1, InputArray rvec2, InputArray tvec2, OutputArray rvec3, OutputArray tvec3, OutputArray dr3dr1=None(), OutputArray dr3dt1=None(), OutputArray dr3dr2=None(), OutputArray dr3dt2=None(), OutputArray dt3dr1=None(), OutputArray dt3dt1=None(), OutputArray dt3dr2=None(), OutputArray dt3dt2=None() )
|
||||
.. cpp:function:: void composeRT( InputArray rvec1, InputArray tvec1, InputArray rvec2, InputArray tvec2, OutputArray rvec3, OutputArray tvec3, OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(), OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(), OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(), OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() )
|
||||
|
||||
Combines two rotation-and-shift transformations.
|
||||
|
||||
@ -508,7 +508,7 @@ The function estimates the object pose given a set of object points, their corre
|
||||
solvePnPRansac
|
||||
------------------
|
||||
|
||||
.. cpp:function:: void solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int iterationsCount = 100, float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = None() )
|
||||
.. cpp:function:: void solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int iterationsCount = 100, float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray() )
|
||||
|
||||
Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
|
||||
|
||||
@ -543,7 +543,7 @@ The function estimates an object pose given a set of object points, their corres
|
||||
|
||||
findFundamentalMat
|
||||
----------------------
|
||||
.. cpp:function:: Mat findFundamentalMat( InputArray points1, InputArray points2, int method=FM_RANSAC, double param1=3., double param2=0.99, OutputArray mask=None() )
|
||||
.. cpp:function:: Mat findFundamentalMat( InputArray points1, InputArray points2, int method=FM_RANSAC, double param1=3., double param2=0.99, OutputArray mask=noArray() )
|
||||
|
||||
Calculates a fundamental matrix from the corresponding points in two images.
|
||||
|
||||
@ -605,7 +605,7 @@ corresponding to the specified points. It can also be passed to
|
||||
|
||||
findHomography
|
||||
------------------
|
||||
.. cpp:function:: Mat findHomography( InputArray srcPoints, InputArray dstPoints, int method=0, double ransacReprojThreshold=3, OutputArray mask=None() )
|
||||
.. cpp:function:: Mat findHomography( InputArray srcPoints, InputArray dstPoints, int method=0, double ransacReprojThreshold=3, OutputArray mask=noArray() )
|
||||
|
||||
Finds a perspective transformation between two planes.
|
||||
|
||||
@ -760,7 +760,7 @@ The function computes partial derivatives of the elements of the matrix product
|
||||
projectPoints
|
||||
-----------------
|
||||
|
||||
.. cpp:function:: void projectPoints( InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, OutputArray imagePoints, OutputArray dpdrot=None(), OutputArray dpdt=None(), OutputArray dpdf=None(), OutputArray dpdc=None(), OutputArray dpddist=None(), double aspectRatio=0 )
|
||||
.. cpp:function:: void projectPoints( InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, OutputArray imagePoints, OutputArray dpdrot=noArray(), OutputArray dpdt=noArray(), OutputArray dpdf=noArray(), OutputArray dpdc=noArray(), OutputArray dpddist=noArray(), double aspectRatio=0 )
|
||||
|
||||
Projects 3D points to an image plane.
|
||||
|
||||
@ -870,7 +870,7 @@ that could be used in OpenGL.
|
||||
|
||||
Rodrigues
|
||||
-------------
|
||||
.. cpp:function:: void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=None())
|
||||
.. cpp:function:: void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray())
|
||||
|
||||
Converts a rotation matrix to a rotation vector or vice versa.
|
||||
|
||||
|
@ -433,7 +433,7 @@ namespace cv
|
||||
{
|
||||
|
||||
//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
|
||||
CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=None());
|
||||
CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray());
|
||||
|
||||
//! type of the robust estimation algorithm
|
||||
enum
|
||||
@ -445,7 +445,7 @@ enum
|
||||
//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
|
||||
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
int method=0, double ransacReprojThreshold=3,
|
||||
OutputArray mask=None());
|
||||
OutputArray mask=noArray());
|
||||
|
||||
//! variant of findHomography for backward compatibility
|
||||
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
@ -453,17 +453,17 @@ CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
|
||||
//! Computes RQ decomposition of 3x3 matrix
|
||||
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
|
||||
OutputArray Qx=None(),
|
||||
OutputArray Qy=None(),
|
||||
OutputArray Qz=None());
|
||||
OutputArray Qx=noArray(),
|
||||
OutputArray Qy=noArray(),
|
||||
OutputArray Qz=noArray());
|
||||
|
||||
//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
|
||||
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
|
||||
OutputArray rotMatrix, OutputArray transVect,
|
||||
OutputArray rotMatrixX=None(),
|
||||
OutputArray rotMatrixY=None(),
|
||||
OutputArray rotMatrixZ=None(),
|
||||
OutputArray eulerAngles=None() );
|
||||
OutputArray rotMatrixX=noArray(),
|
||||
OutputArray rotMatrixY=noArray(),
|
||||
OutputArray rotMatrixZ=noArray(),
|
||||
OutputArray eulerAngles=noArray() );
|
||||
|
||||
//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
|
||||
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
|
||||
@ -474,17 +474,17 @@ CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
|
||||
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
|
||||
InputArray rvec2, InputArray tvec2,
|
||||
OutputArray rvec3, OutputArray tvec3,
|
||||
OutputArray dr3dr1=None(), OutputArray dr3dt1=None(),
|
||||
OutputArray dr3dr2=None(), OutputArray dr3dt2=None(),
|
||||
OutputArray dt3dr1=None(), OutputArray dt3dt1=None(),
|
||||
OutputArray dt3dr2=None(), OutputArray dt3dt2=None() );
|
||||
OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(),
|
||||
OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
|
||||
OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(),
|
||||
OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() );
|
||||
|
||||
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
|
||||
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
|
||||
InputArray rvec, InputArray tvec,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
OutputArray imagePoints,
|
||||
OutputArray jacobian=None(),
|
||||
OutputArray jacobian=noArray(),
|
||||
double aspectRatio=0 );
|
||||
|
||||
//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
|
||||
@ -504,7 +504,7 @@ CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
|
||||
int iterationsCount = 100,
|
||||
float reprojectionError = 8.0,
|
||||
int minInliersCount = 100,
|
||||
OutputArray inliers = None() );
|
||||
OutputArray inliers = noArray() );
|
||||
|
||||
//! initializes camera matrix from a few 3D points and the corresponding projections.
|
||||
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
|
||||
@ -646,7 +646,7 @@ enum
|
||||
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
|
||||
int method=FM_RANSAC,
|
||||
double param1=3., double param2=0.99,
|
||||
OutputArray mask=None());
|
||||
OutputArray mask=noArray());
|
||||
|
||||
//! variant of findFundamentalMat for backward compatibility
|
||||
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
|
||||
@ -730,7 +730,7 @@ protected:
|
||||
|
||||
//! filters off speckles (small regions of incorrectly computed disparity)
|
||||
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff,
|
||||
InputOutputArray buf=None() );
|
||||
InputOutputArray buf=noArray() );
|
||||
|
||||
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
|
||||
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
|
||||
|
@ -3339,7 +3339,7 @@ cv::Mat cv::initCameraMatrix2D( InputArrayOfArrays objectPoints,
|
||||
Size imageSize, double aspectRatio )
|
||||
{
|
||||
Mat objPt, imgPt, npoints, cameraMatrix(3, 3, CV_64F);
|
||||
collectCalibrationData( objectPoints, imagePoints, None(),
|
||||
collectCalibrationData( objectPoints, imagePoints, noArray(),
|
||||
objPt, imgPt, 0, npoints );
|
||||
CvMat _objPt = objPt, _imgPt = imgPt, _npoints = npoints, _cameraMatrix = cameraMatrix;
|
||||
cvInitIntrinsicParams2D( &_objPt, &_imgPt, &_npoints,
|
||||
@ -3364,7 +3364,7 @@ double cv::calibrateCamera( InputArrayOfArrays _objectPoints,
|
||||
size_t i, nimages = _objectPoints.total();
|
||||
CV_Assert( nimages > 0 );
|
||||
Mat objPt, imgPt, npoints, rvecM((int)nimages, 3, CV_64FC1), tvecM((int)nimages, 3, CV_64FC1);
|
||||
collectCalibrationData( _objectPoints, _imagePoints, None(),
|
||||
collectCalibrationData( _objectPoints, _imagePoints, noArray(),
|
||||
objPt, imgPt, 0, npoints );
|
||||
CvMat c_objPt = objPt, c_imgPt = imgPt, c_npoints = npoints;
|
||||
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
|
||||
|
@ -10,7 +10,7 @@ Clustering
|
||||
kmeans
|
||||
------
|
||||
|
||||
.. cpp:function:: double kmeans( InputArray samples, int clusterCount, InputOutputArray labels, TermCriteria termcrit, int attempts, int flags, OutputArray centers=None() )
|
||||
.. cpp:function:: double kmeans( InputArray samples, int clusterCount, InputOutputArray labels, TermCriteria termcrit, int attempts, int flags, OutputArray centers=noArray() )
|
||||
|
||||
Finds centers of clusters and groups input samples around the clusters.
|
||||
|
||||
|
@ -199,7 +199,7 @@ The subset of supported types for each function has been defined from practical
|
||||
InputArray and OutputArray
|
||||
--------------------------
|
||||
|
||||
Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions take cpp:class:`Mat` as parameters, but in some cases it's more convenient to use ``std::vector<>`` (for a point set, for example) or ``Matx<>`` (for 3x3 homography matrix and such). To avoid many duplicates in the API, special "proxy" classes have been introduced. The base "proxy" class is ``InputArray``. It is used for passing read-only arrays on a function input. The derived from ``InputArray`` class ``OutputArray`` is used to specify an output array for a function. Normally, you should not care of those intermediate types (and you should not declare variables of those types explicitly) - it will all just work automatically. You can assume that instead of ``InputArray``/``OutputArray`` you can always use ``Mat``, ``std::vector<>``, ``Matx<>``, ``Vec<>`` or ``Scalar``. When a function has an optional input or output array, and you do not have or do not want one, pass ``cv::None()``.
|
||||
Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions take cpp:class:`Mat` as parameters, but in some cases it's more convenient to use ``std::vector<>`` (for a point set, for example) or ``Matx<>`` (for 3x3 homography matrix and such). To avoid many duplicates in the API, special "proxy" classes have been introduced. The base "proxy" class is ``InputArray``. It is used for passing read-only arrays on a function input. The derived from ``InputArray`` class ``OutputArray`` is used to specify an output array for a function. Normally, you should not care of those intermediate types (and you should not declare variables of those types explicitly) - it will all just work automatically. You can assume that instead of ``InputArray``/``OutputArray`` you can always use ``Mat``, ``std::vector<>``, ``Matx<>``, ``Vec<>`` or ``Scalar``. When a function has an optional input or output array, and you do not have or do not want one, pass ``cv::noArray()``.
|
||||
|
||||
Error Handling
|
||||
--------------
|
||||
|
@ -67,7 +67,7 @@ See Also: :cpp:func:`abs`
|
||||
|
||||
add
|
||||
-------
|
||||
.. cpp:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=None(), int dtype=-1)
|
||||
.. cpp:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
|
||||
|
||||
Computes the per-element sum of two arrays or an array and a scalar.
|
||||
|
||||
@ -166,7 +166,7 @@ See Also:
|
||||
|
||||
bitwise_and
|
||||
-----------
|
||||
.. cpp:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=None())
|
||||
.. cpp:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
|
||||
|
||||
Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
|
||||
|
||||
@ -208,7 +208,7 @@ In case of floating-point arrays, their machine-specific bit representations (us
|
||||
|
||||
bitwise_not
|
||||
-----------
|
||||
.. cpp:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=None())
|
||||
.. cpp:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())
|
||||
|
||||
Inverts every bit of an array.
|
||||
|
||||
@ -230,7 +230,7 @@ In case of a floating-point source array, its machine-specific bit representatio
|
||||
|
||||
bitwise_or
|
||||
----------
|
||||
.. cpp:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=None())
|
||||
.. cpp:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
|
||||
|
||||
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
|
||||
|
||||
@ -273,7 +273,7 @@ The function computes the per-element bit-wise logical disjunction:
|
||||
|
||||
bitwise_xor
|
||||
-----------
|
||||
.. cpp:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=None())
|
||||
.. cpp:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
|
||||
|
||||
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.
|
||||
|
||||
@ -1513,7 +1513,7 @@ See Also:
|
||||
mean
|
||||
----
|
||||
|
||||
.. cpp:function:: Scalar mean(InputArray mtx, InputArray mask=None())
|
||||
.. cpp:function:: Scalar mean(InputArray mtx, InputArray mask=noArray())
|
||||
|
||||
Calculates an average (mean) of array elements.
|
||||
|
||||
@ -1540,7 +1540,7 @@ See Also:
|
||||
meanStdDev
|
||||
----------
|
||||
|
||||
.. cpp:function:: void meanStdDev(InputArray mtx, OutputArray mean, OutputArray stddev, InputArray mask=None())
|
||||
.. cpp:function:: void meanStdDev(InputArray mtx, OutputArray mean, OutputArray stddev, InputArray mask=noArray())
|
||||
|
||||
Calculates mean and standard deviation of array elements.
|
||||
|
||||
@ -1656,7 +1656,7 @@ See Also:
|
||||
minMaxLoc
|
||||
---------
|
||||
|
||||
.. cpp:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=None())
|
||||
.. cpp:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())
|
||||
|
||||
.. cpp:function:: void minMaxLoc(const SparseMat& src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0)
|
||||
|
||||
@ -1824,7 +1824,7 @@ See Also:
|
||||
mulTransposed
|
||||
-------------
|
||||
|
||||
.. cpp:function:: void mulTransposed(InputArray src, OutputArray dst, bool aTa, InputArray delta=None(), double scale=1, int rtype=-1)
|
||||
.. cpp:function:: void mulTransposed(InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int rtype=-1)
|
||||
|
||||
Calculates the product of a matrix and its transposition.
|
||||
|
||||
@ -1834,7 +1834,7 @@ mulTransposed
|
||||
|
||||
:param aTa: Flag specifying the multiplication ordering. See the description below.
|
||||
|
||||
:param delta: Optional delta matrix subtracted from ``src`` before the multiplication. When the matrix is empty ( ``delta=None()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see :cpp:func:`repeat` ) to cover the full ``src`` and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created destination matrix. See the ``rtype`` description.
|
||||
:param delta: Optional delta matrix subtracted from ``src`` before the multiplication. When the matrix is empty ( ``delta=noArray()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see :cpp:func:`repeat` ) to cover the full ``src`` and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created destination matrix. See the ``rtype`` description.
|
||||
|
||||
:param scale: Optional scale factor for the matrix product.
|
||||
|
||||
@ -1867,9 +1867,9 @@ See Also:
|
||||
norm
|
||||
----
|
||||
|
||||
.. cpp:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=None())
|
||||
.. cpp:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
|
||||
|
||||
.. cpp:function:: double norm(InputArray src1, InputArray src2, int normType, InputArray mask=None())
|
||||
.. cpp:function:: double norm(InputArray src1, InputArray src2, int normType, InputArray mask=noArray())
|
||||
|
||||
.. cpp:function:: double norm( const SparseMat& src, int normType )
|
||||
|
||||
@ -1918,7 +1918,7 @@ A multi-channel source arrays are treated as a single-channel, that is, the resu
|
||||
normalize
|
||||
---------
|
||||
|
||||
.. cpp:function:: void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1, InputArray mask=None())
|
||||
.. cpp:function:: void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1, InputArray mask=noArray())
|
||||
|
||||
.. cpp:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
|
||||
|
||||
@ -2938,7 +2938,7 @@ See Also:
|
||||
subtract
|
||||
--------
|
||||
|
||||
.. cpp:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=None(), int dtype=-1)
|
||||
.. cpp:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
|
||||
|
||||
Calculates the per-element difference between two arrays or array and a scalar.
|
||||
|
||||
|
@ -1338,7 +1338,7 @@ typedef const _OutputArray& OutputArray;
|
||||
typedef OutputArray OutputArrayOfArrays;
|
||||
typedef OutputArray InputOutputArray;
|
||||
|
||||
CV_EXPORTS OutputArray None();
|
||||
CV_EXPORTS OutputArray noArray();
|
||||
|
||||
/////////////////////////////////////// Mat ///////////////////////////////////////////
|
||||
|
||||
@ -1659,7 +1659,7 @@ public:
|
||||
//! sets every matrix element to s
|
||||
Mat& operator = (const Scalar& s);
|
||||
//! sets some of the matrix elements to s, according to the mask
|
||||
Mat& setTo(const Scalar& s, InputArray mask=None());
|
||||
Mat& setTo(const Scalar& s, InputArray mask=noArray());
|
||||
//! creates alternative matrix header for the same data, with different
|
||||
// number of channels and/or different number of rows. see cvReshape.
|
||||
Mat reshape(int _cn, int _rows=0) const;
|
||||
@ -1975,10 +1975,10 @@ CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1);
|
||||
|
||||
//! adds one matrix to another (dst = src1 + src2)
|
||||
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
|
||||
InputArray mask=None(), int dtype=-1);
|
||||
InputArray mask=noArray(), int dtype=-1);
|
||||
//! subtracts one matrix from another (dst = src1 - src2)
|
||||
CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
|
||||
InputArray mask=None(), int dtype=-1);
|
||||
InputArray mask=noArray(), int dtype=-1);
|
||||
|
||||
//! computes element-wise weighted product of the two arrays (dst = scale*src1*src2)
|
||||
CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
|
||||
@ -2011,25 +2011,25 @@ CV_EXPORTS_W Scalar sum(InputArray src);
|
||||
//! computes the number of nonzero array elements
|
||||
CV_EXPORTS_W int countNonZero( InputArray src );
|
||||
//! computes mean value of selected array elements
|
||||
CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask=None());
|
||||
CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask=noArray());
|
||||
//! computes mean value and standard deviation of all or selected array elements
|
||||
CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
|
||||
InputArray mask=None());
|
||||
InputArray mask=noArray());
|
||||
//! computes norm of the selected array part
|
||||
CV_EXPORTS_W double norm(InputArray src1, int normType=NORM_L2, InputArray mask=None());
|
||||
CV_EXPORTS_W double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray());
|
||||
//! computes norm of selected part of the difference between two arrays
|
||||
CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
|
||||
int normType=NORM_L2, InputArray mask=None());
|
||||
int normType=NORM_L2, InputArray mask=noArray());
|
||||
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
||||
CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0,
|
||||
int norm_type=NORM_L2, int dtype=-1, InputArray mask=None());
|
||||
int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray());
|
||||
|
||||
//! finds global minimum and maximum array elements and returns their values and their locations
|
||||
CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
|
||||
CV_OUT double* maxVal=0, CV_OUT Point* minLoc=0,
|
||||
CV_OUT Point* maxLoc=0, InputArray mask=None());
|
||||
CV_OUT Point* maxLoc=0, InputArray mask=noArray());
|
||||
CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal,
|
||||
int* minIdx=0, int* maxIdx=0, InputArray mask=None());
|
||||
int* minIdx=0, int* maxIdx=0, InputArray mask=noArray());
|
||||
|
||||
//! transforms 2D matrix to 1D row or column vector by taking sum, minimum, maximum or mean value over all the rows
|
||||
CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1);
|
||||
@ -2067,16 +2067,16 @@ CV_EXPORTS_W void vconcat(InputArray src, OutputArray dst);
|
||||
|
||||
//! computes bitwise conjunction of the two arrays (dst = src1 & src2)
|
||||
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
|
||||
OutputArray dst, InputArray mask=None());
|
||||
OutputArray dst, InputArray mask=noArray());
|
||||
//! computes bitwise disjunction of the two arrays (dst = src1 | src2)
|
||||
CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
|
||||
OutputArray dst, InputArray mask=None());
|
||||
OutputArray dst, InputArray mask=noArray());
|
||||
//! computes bitwise exclusive-or of the two arrays (dst = src1 ^ src2)
|
||||
CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
|
||||
OutputArray dst, InputArray mask=None());
|
||||
OutputArray dst, InputArray mask=noArray());
|
||||
//! inverts each bit of array (dst = ~src)
|
||||
CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
|
||||
InputArray mask=None());
|
||||
InputArray mask=noArray());
|
||||
//! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
|
||||
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
|
||||
//! set mask elements for those array elements which are within the element-specific bounding box (dst = lowerb <= src && src < upperb)
|
||||
@ -2130,7 +2130,7 @@ CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
||||
InputArray src3, double gamma, OutputArray dst, int flags=0);
|
||||
//! multiplies matrix by its transposition from the left or from the right
|
||||
CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
|
||||
InputArray delta=None(),
|
||||
InputArray delta=noArray(),
|
||||
double scale=1, int dtype=-1 );
|
||||
//! transposes the matrix
|
||||
CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
|
||||
@ -2331,7 +2331,7 @@ enum
|
||||
//! clusters the input data using k-Means algorithm
|
||||
CV_EXPORTS_W double kmeans( InputArray data, int K, CV_OUT InputOutputArray bestLabels,
|
||||
TermCriteria criteria, int attempts,
|
||||
int flags, OutputArray centers=None() );
|
||||
int flags, OutputArray centers=noArray() );
|
||||
|
||||
//! returns the thread-local Random number generator
|
||||
CV_EXPORTS RNG& theRNG();
|
||||
@ -3662,18 +3662,18 @@ public:
|
||||
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
|
||||
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
|
||||
OutputArray neighborsIdx,
|
||||
OutputArray neighbors=None(),
|
||||
OutputArray dist=None(),
|
||||
OutputArray labels=None()) const;
|
||||
OutputArray neighbors=noArray(),
|
||||
OutputArray dist=noArray(),
|
||||
OutputArray labels=noArray()) const;
|
||||
//! finds all the points from the initial set that belong to the specified box
|
||||
CV_WRAP void findOrthoRange(InputArray minBounds,
|
||||
InputArray maxBounds,
|
||||
OutputArray neighborsIdx,
|
||||
OutputArray neighbors=None(),
|
||||
OutputArray labels=None()) const;
|
||||
OutputArray neighbors=noArray(),
|
||||
OutputArray labels=noArray()) const;
|
||||
//! returns vectors with the specified indices
|
||||
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
|
||||
OutputArray labels=None()) const;
|
||||
OutputArray labels=noArray()) const;
|
||||
//! return a vector with the specified index
|
||||
const float* getPoint(int ptidx, int* label=0) const;
|
||||
//! returns the search space dimensionality
|
||||
|
@ -1156,36 +1156,36 @@ void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
|
||||
|
||||
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
|
||||
{
|
||||
binary_op(src1, src2, dst, None(), maxTab, false );
|
||||
binary_op(src1, src2, dst, noArray(), maxTab, false );
|
||||
}
|
||||
|
||||
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
|
||||
{
|
||||
binary_op(src1, src2, dst, None(), minTab, false );
|
||||
binary_op(src1, src2, dst, noArray(), minTab, false );
|
||||
}
|
||||
|
||||
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, None(), maxTab, false );
|
||||
binary_op(src1, src2, _dst, noArray(), maxTab, false );
|
||||
}
|
||||
|
||||
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, None(), minTab, false );
|
||||
binary_op(src1, src2, _dst, noArray(), minTab, false );
|
||||
}
|
||||
|
||||
void cv::max(const Mat& src1, double src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, None(), maxTab, false );
|
||||
binary_op(src1, src2, _dst, noArray(), maxTab, false );
|
||||
}
|
||||
|
||||
void cv::min(const Mat& src1, double src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, None(), minTab, false );
|
||||
binary_op(src1, src2, _dst, noArray(), minTab, false );
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
@ -1466,7 +1466,7 @@ void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
|
||||
|
||||
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
|
||||
{
|
||||
arithm_op(src1, src2, dst, None(), -1, absdiffTab);
|
||||
arithm_op(src1, src2, dst, noArray(), -1, absdiffTab);
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
@ -1779,19 +1779,19 @@ static BinaryFunc recipTab[] =
|
||||
void cv::multiply(InputArray src1, InputArray src2,
|
||||
OutputArray dst, double scale, int dtype)
|
||||
{
|
||||
arithm_op(src1, src2, dst, None(), dtype, mulTab, true, &scale);
|
||||
arithm_op(src1, src2, dst, noArray(), dtype, mulTab, true, &scale);
|
||||
}
|
||||
|
||||
void cv::divide(InputArray src1, InputArray src2,
|
||||
OutputArray dst, double scale, int dtype)
|
||||
{
|
||||
arithm_op(src1, src2, dst, None(), dtype, divTab, true, &scale);
|
||||
arithm_op(src1, src2, dst, noArray(), dtype, divTab, true, &scale);
|
||||
}
|
||||
|
||||
void cv::divide(double scale, InputArray src2,
|
||||
OutputArray dst, int dtype)
|
||||
{
|
||||
arithm_op(src2, src2, dst, None(), dtype, recipTab, true, &scale);
|
||||
arithm_op(src2, src2, dst, noArray(), dtype, recipTab, true, &scale);
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
@ -1944,7 +1944,7 @@ void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
|
||||
double beta, double gamma, OutputArray dst, int dtype )
|
||||
{
|
||||
double scalars[] = {alpha, beta, gamma};
|
||||
arithm_op(src1, src2, dst, None(), dtype, addWeightedTab, true, scalars);
|
||||
arithm_op(src1, src2, dst, noArray(), dtype, addWeightedTab, true, scalars);
|
||||
}
|
||||
|
||||
|
||||
|
@ -3639,7 +3639,7 @@ computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
|
||||
|
||||
void KDTree::build(InputArray _points, bool _copyData)
|
||||
{
|
||||
build(_points, None(), _copyData);
|
||||
build(_points, noArray(), _copyData);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1435,7 +1435,7 @@ static bool eigen( InputArray _src, OutputArray _evals, OutputArray _evects, boo
|
||||
|
||||
bool cv::eigen( InputArray src, OutputArray evals, int lowindex, int highindex )
|
||||
{
|
||||
return eigen(src, evals, None(), false, lowindex, highindex);
|
||||
return eigen(src, evals, noArray(), false, lowindex, highindex);
|
||||
}
|
||||
|
||||
bool cv::eigen( InputArray src, OutputArray evals, OutputArray evects,
|
||||
@ -1522,7 +1522,7 @@ void SVD::compute( InputArray a, OutputArray w, OutputArray u, OutputArray vt, i
|
||||
|
||||
void SVD::compute( InputArray a, OutputArray w, int flags )
|
||||
{
|
||||
_SVDcompute(a, w, None(), None(), flags);
|
||||
_SVDcompute(a, w, noArray(), noArray(), flags);
|
||||
}
|
||||
|
||||
void SVD::backSubst( InputArray _w, InputArray _u, InputArray _vt,
|
||||
|
@ -1399,7 +1399,7 @@ Mat& _OutputArray::getMatRef(int i) const
|
||||
}
|
||||
|
||||
static _OutputArray _none;
|
||||
OutputArray None() { return _none; }
|
||||
OutputArray noArray() { return _none; }
|
||||
|
||||
}
|
||||
|
||||
|
@ -193,7 +193,7 @@ The algorithm sets the center of the neighborhood window at this new center
|
||||
goodFeaturesToTrack
|
||||
-------------------
|
||||
|
||||
.. cpp:function:: void goodFeaturesToTrack( InputArray image, OutputArray corners, int maxCorners, double qualityLevel, double minDistance, InputArray mask=None(), int blockSize=3, bool useHarrisDetector=false, double k=0.04 )
|
||||
.. cpp:function:: void goodFeaturesToTrack( InputArray image, OutputArray corners, int maxCorners, double qualityLevel, double minDistance, InputArray mask=noArray(), int blockSize=3, bool useHarrisDetector=false, double k=0.04 )
|
||||
|
||||
Determines strong corners on an image.
|
||||
|
||||
|
@ -519,7 +519,7 @@ By default, the undistortion functions in OpenCV (see
|
||||
|
||||
undistort
|
||||
-------------
|
||||
.. cpp:function:: void undistort( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray newCameraMatrix=None() )
|
||||
.. cpp:function:: void undistort( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray newCameraMatrix=noArray() )
|
||||
|
||||
Transforms an image to compensate for lens distortion.
|
||||
|
||||
@ -554,7 +554,7 @@ The camera matrix and the distortion parameters can be determined using
|
||||
|
||||
undistortPoints
|
||||
-------------------
|
||||
.. cpp:function:: void undistortPoints( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray R=None(), InputArray P=None())
|
||||
.. cpp:function:: void undistortPoints( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray R=noArray(), InputArray P=noArray())
|
||||
|
||||
Computes the ideal point coordinates from the observed point coordinates.
|
||||
|
||||
|
@ -7,7 +7,7 @@ Motion Analysis and Object Tracking
|
||||
|
||||
accumulate
|
||||
--------------
|
||||
.. cpp:function:: void accumulate( InputArray src, InputOutputArray dst, InputArray mask=None() )
|
||||
.. cpp:function:: void accumulate( InputArray src, InputOutputArray dst, InputArray mask=noArray() )
|
||||
|
||||
Adds an image to the accumulator.
|
||||
|
||||
@ -36,7 +36,7 @@ See Also:
|
||||
|
||||
accumulateSquare
|
||||
--------------------
|
||||
.. cpp:function:: void accumulateSquare( InputArray src, InputOutputArray dst, InputArray mask=None() )
|
||||
.. cpp:function:: void accumulateSquare( InputArray src, InputOutputArray dst, InputArray mask=noArray() )
|
||||
|
||||
Adds the square of a source image to the accumulator.
|
||||
|
||||
@ -63,7 +63,7 @@ See Also:
|
||||
|
||||
accumulateProduct
|
||||
---------------------
|
||||
.. cpp:function:: void accumulateProduct( InputArray src1, InputArray src2, InputOutputArray dst, InputArray mask=None() )
|
||||
.. cpp:function:: void accumulateProduct( InputArray src1, InputArray src2, InputOutputArray dst, InputArray mask=noArray() )
|
||||
|
||||
Adds the per-element product of two input images to the accumulator.
|
||||
|
||||
@ -92,7 +92,7 @@ See Also:
|
||||
|
||||
accumulateWeighted
|
||||
----------------------
|
||||
.. cpp:function:: void accumulateWeighted( InputArray src, InputOutputArray dst, double alpha, InputArray mask=None() )
|
||||
.. cpp:function:: void accumulateWeighted( InputArray src, InputOutputArray dst, double alpha, InputArray mask=noArray() )
|
||||
|
||||
Updates a running average.
|
||||
|
||||
|
@ -150,7 +150,7 @@ Source ``image`` is modified by this function.
|
||||
|
||||
drawContours
|
||||
----------------
|
||||
.. cpp:function:: void drawContours( InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const Scalar& color, int thickness=1, int lineType=8, InputArray hierarchy=None(), int maxLevel=INT_MAX, Point offset=Point() )
|
||||
.. cpp:function:: void drawContours( InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const Scalar& color, int thickness=1, int lineType=8, InputArray hierarchy=noArray(), int maxLevel=INT_MAX, Point offset=Point() )
|
||||
|
||||
Draws contours outlines or filled contours.
|
||||
|
||||
|
@ -462,7 +462,7 @@ CV_EXPORTS void cornerSubPix( InputArray image, InputOutputArray corners,
|
||||
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
|
||||
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
|
||||
int maxCorners, double qualityLevel, double minDistance,
|
||||
InputArray mask=None(), int blockSize=3,
|
||||
InputArray mask=noArray(), int blockSize=3,
|
||||
bool useHarrisDetector=false, double k=0.04 );
|
||||
|
||||
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
|
||||
@ -574,16 +574,16 @@ CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
|
||||
|
||||
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
|
||||
CV_EXPORTS_W void accumulate( InputArray src, CV_IN_OUT InputOutputArray dst,
|
||||
InputArray mask=None() );
|
||||
InputArray mask=noArray() );
|
||||
//! adds squared src image to the accumulator (dst += src*src).
|
||||
CV_EXPORTS_W void accumulateSquare( InputArray src, CV_IN_OUT InputOutputArray dst,
|
||||
InputArray mask=None() );
|
||||
InputArray mask=noArray() );
|
||||
//! adds product of the 2 images to the accumulator (dst += src1*src2).
|
||||
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
|
||||
CV_IN_OUT InputOutputArray dst, InputArray mask=None() );
|
||||
CV_IN_OUT InputOutputArray dst, InputArray mask=noArray() );
|
||||
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
|
||||
CV_EXPORTS_W void accumulateWeighted( InputArray src, CV_IN_OUT InputOutputArray dst,
|
||||
double alpha, InputArray mask=None() );
|
||||
double alpha, InputArray mask=noArray() );
|
||||
|
||||
//! type of the threshold operation
|
||||
enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
|
||||
@ -617,7 +617,7 @@ CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, int maxle
|
||||
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
|
||||
InputArray cameraMatrix,
|
||||
InputArray distCoeffs,
|
||||
InputArray newCameraMatrix=None() );
|
||||
InputArray newCameraMatrix=noArray() );
|
||||
|
||||
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
|
||||
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
|
||||
@ -643,7 +643,7 @@ CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsiz
|
||||
//! returns points' coordinates after lens distortion correction
|
||||
CV_EXPORTS void undistortPoints( InputArray src, OutputArray dst,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
InputArray R=None(), InputArray P=None());
|
||||
InputArray R=noArray(), InputArray P=noArray());
|
||||
|
||||
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
|
||||
|
||||
@ -682,8 +682,8 @@ CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int met
|
||||
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
|
||||
|
||||
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
|
||||
int distType, InputArray cost=None(),
|
||||
float* lowerBound=0, OutputArray flow=None() );
|
||||
int distType, InputArray cost=noArray(),
|
||||
float* lowerBound=0, OutputArray flow=noArray() );
|
||||
|
||||
//! segments the image using watershed algorithm
|
||||
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
|
||||
@ -818,7 +818,7 @@ CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contou
|
||||
CV_EXPORTS void drawContours( InputOutputArray image, InputArrayOfArrays contours,
|
||||
int contourIdx, const Scalar& color,
|
||||
int thickness=1, int lineType=8,
|
||||
InputArray hierarchy=None(),
|
||||
InputArray hierarchy=noArray(),
|
||||
int maxLevel=INT_MAX, Point offset=Point() );
|
||||
|
||||
//! approximates contour or a curve using Douglas-Peucker algorithm
|
||||
|
@ -1519,7 +1519,7 @@ void cv::findContours( const InputOutputArray _image, OutputArrayOfArrays _conto
|
||||
void cv::findContours( InputOutputArray _image, OutputArrayOfArrays _contours,
|
||||
int mode, int method, Point offset)
|
||||
{
|
||||
findContours(_image, _contours, None(), mode, method, offset);
|
||||
findContours(_image, _contours, noArray(), mode, method, offset);
|
||||
}
|
||||
|
||||
namespace cv
|
||||
|
@ -272,12 +272,12 @@ void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, Output
|
||||
|
||||
void cv::integral( InputArray src, OutputArray sum, int sdepth )
|
||||
{
|
||||
integral( src, sum, None(), None(), sdepth );
|
||||
integral( src, sum, noArray(), noArray(), sdepth );
|
||||
}
|
||||
|
||||
void cv::integral( InputArray src, OutputArray sum, OutputArray sqsum, int sdepth )
|
||||
{
|
||||
integral( src, sum, sqsum, None(), sdepth );
|
||||
integral( src, sum, sqsum, noArray(), sdepth );
|
||||
}
|
||||
|
||||
|
||||
|
@ -203,7 +203,7 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
int code = cvtest::TS::OK;
|
||||
Mat bestLabels;
|
||||
// 1. flag==KMEANS_PP_CENTERS
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, None() );
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() );
|
||||
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
||||
@ -211,7 +211,7 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
}
|
||||
|
||||
// 2. flag==KMEANS_RANDOM_CENTERS
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, None() );
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() );
|
||||
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
||||
@ -223,7 +223,7 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
RNG rng;
|
||||
for( int i = 0; i < 0.5f * pointsCount; i++ )
|
||||
bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, None() );
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() );
|
||||
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
||||
|
@ -457,7 +457,7 @@ class CppHeaderParser(object):
|
||||
("InputArray", "Mat"),
|
||||
("InputOutputArray", "Mat"),
|
||||
("OutputArray", "Mat"),
|
||||
("None", arg_type)]).strip()
|
||||
("noArray", arg_type)]).strip()
|
||||
args.append([arg_type, arg_name, defval, modlist])
|
||||
npos = arg_start-1
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user